
Complex Systems Informatics and Modeling Quarterly (CSIMQ)

eISSN: 2255-9922

Published online by RTU Press, https://csimq-journals.rtu.lv

Article 144, Issue 25, December 2020/January 2021, Pages 19–31

https://doi.org/10.7250/csimq.2020-25.02

Agile Development of PHP Websites:

A Model-Aware Approach

Carmen Ioana Gog*

Faculty of Economics and Business Administration, Babeș-Bolyai University,

Teodor Mihali Street Nr. 58-60, Cluj-Napoca, 400591, Romania

carmen.gog@yahoo.com

Abstract. The Design Science research method was hereby employed to

develop an artifact that demonstrates the experimental “model-aware” software

engineering methodology in the context of PHP Web development – a “low

code” development approach with code templates generated from technology-

specific models. The proof-of-concept consists of two interacting components: a

custom diagrammatic modeling environment and model-driven generated PHP

pages. The interaction between the two components conforms the engineering

method labelled as “Model-aware software engineering” (MASE) – a flavor of

model-driven engineering recently introduced in research projects as a

hybridization of the Agile Modeling Method Engineering (AMME) framework

and the Resource Description Framework (RDF). The experimental MASE

method is employed here to demonstrate its feasibility for the common Model-

View-Controller (MVC) website development pattern, thus showing potential to

support common Web development work.

Keywords: Agile Modeling Method Engineering, Model-Aware Software

Engineering, Resource Description Framework, Model-Driven Webpages.

1 Introduction

Recent research in model-driven engineering introduced two novel notions: (a) “technology-

specific” modeling languages, a kind of domain-specific modeling languages where, instead of

domain concepts, the language must assimilate technology-specific constructs as first order

modeling citizens [1] and (b) “model-aware software engineering” (MASE), a flavor of model-

driven engineering where models interact with running software through semantic

technology [2].

The work at hand combines the two notions through a Design Science approach in order to

demonstrate the feasibility of MASE for engineering tasks as common as

Model-View-Controller (MVC) based Web development in PHP. The artifact reported by this

article comprises two components: (a) a technology-specific modeling method for PHP Web

* Corresponding author

© 2020 Carmen Ioana Gog. This is an open access article licensed under the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/4.0).

Reference: C. I. Gog, “Agile Development of PHP Websites: A Model-Aware Approach,” Complex Systems Informatics and

Modeling Quarterly, CSIMQ, no. 25, pp. 19–31, 2020. Available: https://doi.org/10.7250/csimq.2020-25.02

Additional information. Author’s ORCID iD: C. I. Gog – https://orcid.org/0000-0001-7358-069X. PII S225599222000144X.

Received: 15 November 2020. Accepted: 9 December 2020. Available online: 31 December 2020.

https://csimq-journals.rtu.lv/
http://creativecommons.org/licenses/by/4.0
https://orcid.org/0000-0001-7358-069X

20

development and (b) demonstrative pages created by applying MASE with input from diagrams

created with that method.

Design Science [3] was engaged as a research method and MASE [2] as an engineering

method, combining Agile Modeling Method Engineering (AMME) [4] (used for the

implementation of the diagrammatic modeling tool) with Resource Description Framework

(RDF) [5] as semantic bridge between the PHP development environment and the technology-

specific models.

The remainder of the article is structured as follows: Section 2 provides an overview of the

used methods and languages for the entire artifact development process, together with the

requirements for both the custom-made diagrammatic modeling tool and the model-driven

webpages. Section 3 comments on the related literature. Section 4 briefly presents the used

research method together with the development method. Section 5 draws up the design decisions

made for both components. Section 6 details some of the implementation details. The article

ends with a concluding evaluation and outlook.

2 Problem Statement and Solution Architecture

The targeted beneficiaries are Web developers aiming for a low-code development approach for

common webpage patterns such as form management and CRUD operations. Templating

systems are already well supported by MVC frameworks such as CakePHP [6] – however, this is

still done in a codebase manner, whereas the artifact reported by this article does it with a

diagrammatic method that incorporates semantic constructs of the CakePHP framework

(actually, of most MVC frameworks) meaning that the proposal can act as a low-code

development approach.

Website developers are thus supported with a diagrammatic panel to define the usage flow of a

website, the order of screens and operations in the user experience.

Conceptual modeling is the key to designing information systems, as it provides a graphical

representation of human comprehension of systems or processes, possibly specialized according

to a domain’s semantics (in domain-specific languages) – a notion that in the case of this work

translates to technology-specific semantics pertaining to PHP Web development.

This specificity is reflected in modeling requirements and must be assimilated with

metamodeling means in the modeling language – i.e., modeling is seen as knowledge

representation. Therefore, AMME was employed to provide the needed language customizations.

The work at hand applies the MASE method to transferred technology-specific diagrams to the

website skeleton that thus is informed at build-time about the order of CRUD and front-end

operations that should be exposed to an end-user. This is mediated by a Graph DB management

system [7] acting as the model repository for the MASE approach. The diagrammatic modeling

tool was implemented using ADOxx [8]. This architecture is depicted in Figure 1.

3 Literature Review

Diagrammatic models are a form of knowledge representation [9] presenting human-readable

and linkable diagrammatic content that can be easily navigated by users, but at the same time

they contain machine-readable knowledge [10], making possible the implementation of

knowledge-driven functionality.

When creating diagrammatic models, the modeler must consider certain principles to

effectively model, design and implement process-aware systems, gaining understanding

regarding major concepts, languages and techniques, according to [11], and certain visualization

principles must be considered, according to [9] and [10].

By enacting agile modeling principles combined with business modeling practices the

intersection of practices in software development and model-driven engineering naturally lead to

Agile Modeling [11]. Agile principles, as encouraged by [12], are necessary to be coupled with

21

Modeling Method Engineering, considering method development backlogs based on the building

blocks defined in [4]. OMiLAB (Open Models Laboratory) was introduced there as a facilitator

to domain-specific modeling methods development (acting as deployment environment and

architecture) – with more details given in [13]. OMiLAB resources such as AMME and ADOxx

and the ADOxx-to-RDF model export plug-in are employed in this work to crystalize the notion

of “technology-specific modeling”.

Figure 1. Architecture and interactions between the artifact components

Technology-specific methods are a flavor of situation-specific methods as understood by [14],

or as domain-specific methods as understood by the contributors of [15]. For the implementation

of situation-specific or domain-specific methods several environments are available with their

particular methodologies: [16] presents MetaEdit++; Eclipse-based Sirius [17] has recently

become available; ADOxx was hereby employed due to its proven success in applying MASE.

A domain-specific method with RDF exporting capabilities was presented in [18] and is

available as the Bee-Up tool at [19], also implemented on ADOxx. Bee-Up supports model-

driven engineering through means such as SQL generation, HTTP requests and RDF; but it aims

to comply with popular and standard modeling languages (UML, BPMN, ER) rather than taking

the technology-specific modeling approach advertised in this article.

When taking into consideration standards, Interaction Flow Modeling Language (IFML) was

“designed to express the content, user interaction and control behavior of the front-end software

applications” [20]. The control of the behavior of front-end pages is presented by the authors

of [21] through the generation of user interfaces from BPMN models and Class diagrams by

identification and extraction of different rules and using stereotypes to extend BPMN notation.

However, the work at hand proposes to generate user interfaces from an entirely customized

modeling language.

22

Another method that established an RDF-based bridge between modelers and app developers

is ComVantage [22], however, that was not intended to support common Web development

tasks, mostly focusing on mobile app orchestration.

The literature also reports other approaches for managing model contents with semantic

technology [23] – however the focus of that work is the ontological integration of models rather

that generation of running webpage code.

4 Research and Engineering Method

Because it is a solution-oriented research method, Design Science has an engineering cycle

driven by examining the existing requirements [3]. The cycle comprises five phases: Real-world

problem investigation, Treatment design (interaction between the artifact and context), Design

validation, Treatment implementation, and Evaluation. However, the identified requirements for

a technology-specific language brings additional variability, which leads to the need for an agile

methodology.

Because modeling requirements demand flexibility both for model contents and modeling

method, the AMME framework was applied to develop the diagrammatic modeling tool. Agility

from AMME’s point of view described in [4] materializes into artifact agility (facilitated by the

division of a modeling method into building blocks) and methodological agility which

“manifests in the engineering process itself, taking the form of an incremental and iterative

spiraling development.”

The proposed artifact (i.e., modeling method) consists of a modeling language having notation

(graphical symbols), syntax (rules for combining graphical symbols in each diagram type) and

semantics (meaning of the modeling elements). Other components are the mechanisms, covering

the functionality, and the modeling procedure which comprises the modeling actions. In addition,

model-driven webpages were implemented for evaluation purposes.

In terms of the employed instruments the following were ingredients of the engineering cycle:

• ADOxx [8] the metamodeling platform which was used in the development of the modeling

toolkit;

• RDF [5] used for representing model contents as graphs, with ADOxx’s RDFTransformer to

convert the metamodel and models in a way that can be managed by GraphDB;

• SPARQL [24] as semantic query language for models;

• GraphDB [7] for model repository management;

• CakePHP [6] the MVC framework for website development, and MySQL [25] for the

website data;

• EasyRDF [26] the programming library to manage RDF graphs in PHP.

5 Design Decisions

In designing the metamodel of the proposed modeling software the slicing technique presented

by the authors of [27] was employed.

Figure 2 presents the metamodel governing the proposed modeling software. The Operations

Model type allows to model three types of operations (input, output and decisions), and the ER

Model type is a simplified flavor of ER to describe data entities subjected to CRUD operations.

Semantic links are enabled between the two diagram types. The abstract classes comprise the

ADOxx-specific _D_construct and Node concepts. Model Type: Operations forms the slice for

the UI microflow and comprises one relation class which is Sequence relation and four node

classes: Fields, Operation Input, Operation Output, Operation Decision. Model Type: ER is a

slice describing the data to be manipulated by front-end forms with a simplified approach to ER

modeling, adopted for demonstration purposes (the ER part will be oversimplified, since it is

23

well-known and not the focus of this work only its relevant elements will be brought into

discussion).

Figure 2. The metamodel

The concepts which form the Operations Model are: OperationInput (O.I.), OperationOutput

(O.O.) and OperationDecision (O.D.). The relation between them is called “Sequence relation”

and it shows the order of operations as defined in a diagrammatic way. Table 1 presents them as

they are defined graphically on the ADOxx platform.

Table 1. Metamodel concepts and their graphical symbols

Model Type
Concepts and their graphical

symbols

Relations between concepts and

their graphical symbols

O
p

er
a

ti
o

n
s

 OperationInput (O.I.)

 Sequence relation OperationOutput (O.O.)

 OperationDecision (O.D.)

E
R

 Attribute

 hasAttribute /

 hasRelationship
 Entity

 Relation

With respect to machine-readable semantics, for O.I. an attribute is “Input fields” (of type

RECORD) which has the form of a table containing the fields “FieldName” (of type STRING),

“FieldType” (of type ENUMERATION), and “ER” (of type INTERREF, a kind of hyperlink).

Modelers are thus allowed to define form field names, their type and the corresponding ER

attribute to be referenced by the current field. The field types are the ones predefined by HTML.

The attribute “uses table” permits the modeler to select the corresponding attribute from an ER

diagram to be used by the current operation making possible the navigation across diagrams.

24

For O.O. an attribute named “Query Text” was created to allow the modeler to type in a query in

SQL format in order to perform an operation on the MySQL database. The MySQL database

must be created and populated in advance.

For O.D. an attribute is “Question”, which allows modelers to define the question answered by

the form. Sequence relation semantics provide a “Transition condition” attribute to describe the

condition which determines the advancement from current operation to the next operation.

PHP pages are built using the MVC framework CakePHP. The model-driven webpages

perform operations on a MySQL database according to the diagrammatic design.

In Figure 3 the MVC architecture is shown, as applied on the model-aware website together

with the existing connections. The architecture connects to both MySQL and GraphDB

databases. While on MySQL database the SQL queries retrieve data to support the webpage

functionality, on GraphDB the SPARQL queries act as “model queries” to fill the PHP/HTML

code templates.

Figure 3. CakePHP architecture connected to MySQL database and GraphDB

6 Implementation Details

6.1 Implementation of the Technology-Specific Modeling Tool

An example of O.I. named “Registration” can be seen in Figure 4 together with all its possible

annotation options that lead to the generation of an HTML input form.

An example of O.O. named “Products” can be seen in Figure 5. This will trigger the execution

of a MySQL query on the database attached to the model. Figure 6 shows an exemplification of

the operation type Decision which it will manifest as a webpage asking the user whether he/she

wants to take a particular path in his front-end interaction.

Sequence Relations connect these Operation types, with a “Transition condition” that will

provide options to be followed by the website user through the usage flow.

An exemplification of described operation types can be seen in Figure 7 where operations of

type input are “Registration”, “Select product”, and “Shipping”; an operation of type output is

“Products” and an operation of type decision is the displayed question. Transition conditions that

can redirect the front-end usage flow are “A. buy product” and “B. store personal data for future

operations”.

25

Figure 4. Exemplification of an Input Operation and its mapping on ER elements

Figure 5. Attaching queries to diagram elements that represent database Operations

Figure 6. Attaching question text to diagram elements identified as Decision

26

Figure 7. Diagram sample created within the proposed diagrammatic modeling tool

Models are translated to RDF graphs with ADOxx’s RDFTransformer plug-in. After the RDF

export is completed, GraphDB will allow the extraction (using queries) of information from the

models. Some query examples can be seen in Figure 8, detecting the operations connected by an

arrow (left) and the fieldnames attached to an operation (right).

Figure 8. Semantic query examples for retrieving model elements

6.2 Implementation of Model-Aware Webpages

Model-aware webpages were implemented using CakePHP (an MVC) framework. Their content

has been generated automatically based on the created models. Each page of the website

represents an operation specified in the modeling tool. The order in which webpages are

displayed is dictated by the diagrammatic order in the page flow model (the Operations model

type).

The Registration webpage (visible in Figure 9 and Figure 10) is generated based on the created

“Registration” operation within the Operations model. After the user completes the form, data is

stored in “operations” (a MySQL database). Another query checks which is the current operation

generating the “NEXT” button to the next operation page.

27

Figure 9. Operations mapped on associated PHP pages

28

Figure 10. Operations within Registration Page

The Decision webpage is generated based on the created “Decision” operation within the

Operations model. The page looks for Sequence relations outgoing from the operation Decision

and their transition conditions are provided as a selection list Based on the selection, the button

“NEXT” for the corresponding operation page is generated. As presented in Figure 9, if the user

29

chooses option “A. buy product” he is redirected to the Products page, otherwise to the Shipping

page.

The Products webpage is generated based on the created “Products” operation within the

Operations model. A variable takes the query which the modeler types into the “Query text” area

and runs it on the Products table (from the MySQL “operations” database). The name of the

products is concatenated with their price for a better view and the “NEXT” button is generated to

direct the user from the current operation page to the following one.

The Select product webpage is generated based on the created “Selected product” operation

within the Operations model. The PHP page retrieves the products and their price (from products

table). Further on, they are grouped in a dropdown list where the user can perform selection of

products. In the “Products web page” area, the products and their price are displayed, while in

the “SelectProducts webpage” section the insertion of selected products is performed (into the

“selections” table from MySQL) by clicking the submit button; After the selected products are

stored into the corresponding table the button (NEXT) leading to the next operation page is

generated.

7 Testing and Evaluation

The testing and evaluation was inspired by the artifact evaluation criteria discussed in [28].

A first evaluation was made by analyzing the usability. Because the operators are humans,

usability informs on the complexity of the interfaces and how operators deals with them. The

diagrammatic modeling tool was tested by the PHP software’s architect. Prior to giving the

modeling software to the website architect in order to test it, the necessary instructions have been

presented to him. The instructions include defining the types of operations which can be created,

the purpose for which each operation type can be used and how operations can be connected in

order to have a logical flow. For creating the diagram described above, the number of clicks

given per each operation can be seen in Table 2, counting a number of 103 clicks in total. This

gives an impression on the usability and low-code (diagrammatic) effort behind developing the

sequence of shown webpages.

Table 2. Number of clicks given for each operation and relation creation

Operation

Name

Number of

clicks

given to

create the

operation

Registration 21

Decision 6

Products 6

Select product 21

Shipping 21

Sequence relation (relation)
19

Transition condition(relation)

Total number of clicks 103

The developers of the model-driven website tested it continuously all along the development

process. In terms of limitations, because MVC connects to MySQL tables, in its Model section,

the used database type was set to MySQL, but in parallel the connection to GraphDB had to be

performed in each of the PHP files. This means that the approach would benefit from MVC

frameworks that are capable of mixing object-relational database mappers with object-RDF

mappers (much less common). As a synthetic evaluation, a SWOT analysis is summarized in

Table 3.

30

Table 3. SWOT analysis for the proposed artifact

8 Conclusions

This article presented the design and engineering details for creating a demonstrative artifact

comprising a “technology-specific” modeling tool successfully applied for developing typical

components in a PHP website. This showcases the applicability of the model-aware software

engineering approach to common Web development tasks, assuming expertise with modeling

method engineering and RDF information retrieval.

Future work will improve the generality of the proposal by identifying constructs common to

multiple MVC frameworks regardless of language, so that not only PHP developers are

supported. Since MVC development is a pattern-driven approach, it is adequate for a model-

driven engineering approach where commonly used patterns can be configured on a

diagrammatic level to enable a new approach to low code development.

References

[1] A. Harkai, M. Cinpoeru, and R. A. Buchmann, “The ‘What’ facet of the Zachman framework: a Linked Data-

driven Interpretation,” Proceedings of CAISE 2018 Workshops, Lecture Notes in Business Information

Processing, Springer, vol. 316, pp. 197–208, 2018. Available: https://doi.org/10.1007/978-3-319-92898-2_17

[2] R. A. Buchmann, M. Cinpoeru, A. Harkai, and D. Karagiannis, “Model-Aware Software Engineering – A

Knowledge-based Approach to Model-Driven Software Engineering,” Proceedings of the 13th International

Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2018), ScitePress, vol. 1,

pp. 233–240, 2018. Available: https://doi.org/10.5220/0006694102330240

[3] R. J. Wieringa, Design Science Methodology for Information Systems and Software Engineering, Springer,

2014. Available: https://doi.org/10.1007/978-3-662-43839-8

[4] D. Karagiannis, “Agile modeling method engineering,” Proceedings of the 19th Panhellenic Conference on

Informatics, ACM, pp. 5–10, 2015. Available: https://doi.org/10.1145/2801948.2802040

[5] W3C, RDF. Available: https://www.w3.org/RDF/. Accessed on December 1, 2020.

[6] CakePHP, CakePHP. Available: https://cakephp.org. Accessed on December 3, 2020.

[7] Ontotext, GraphDB. Available: https://graphdb.ontotext.com. Accessed on December 3, 2020.

[8] BOC, ADOxx Metamodelling Platform. Available: https://www.adoxx.org/live/about. Accessed on December

2, 2020.

[9] D. Moody, “The physics of notations: Toward a scientific basis for constructing visual notations in software

engineering,” IEEE Transactions on Software Engineering, vol. 35, no. 6, pp. 756–779, 2009. Available:

https://doi.org/10.1109/TSE.2009.67

[10] D. L. Moody, P. Heymans, and R. Matulevičius, “Visual syntax does matter: Improving the cognitive

effectiveness of the i* visual notation,” Requirements Engineering, vol. 15, no. 2, pp. 141–175, 2010.

Available: https://doi.org/10.1007/s00766-010-0100-1

STRENGTHS

• Possibility to generate template-based

webpages from diagrammatic descriptions

• Low-code development of the website

• Demonstrates the feasibility of the MASE

engineering approach and an expository

instance of “technology-specific”

modeling

WEAKNESSES

• Operations are of limited types and have limited

field types

• Website only partially generated, currently not

including state management

• The ER component of the metamodel is

oversimplified to focus the current presentation on

its original contribution

OPPORTUNITIES

• Tailoring this work for more standard

models (BPMN, Petri Nets, etc.)

THREATS

• Low-code platforms are becoming successful

without relying on conceptual modeling

environments [29]; we consider, however, that the

lessons learned over time in the metamodeling

community can facilitate the development of such

platforms

https://doi.org/10.1007/978-3-319-92898-2_17
https://doi.org/10.5220/0006694102330240
https://doi.org/10.1007/978-3-662-43839-8
https://doi.org/10.1145/2801948.2802040
https://www.w3.org/RDF/
https://cakephp.org/
https://graphdb.ontotext.com/
https://www.adoxx.org/live/about
https://doi.org/10.1109/TSE.2009.67
https://doi.org/10.1007/s00766-010-0100-1

31

[11] S. Ambler, Agile Modeling: Effective Practices for eXtreme Programming and the Unified Process, John

Wiley & Sons, Inc., 2002.

[12] R. Hu, Z. Wang, J. Hu, J. Xu, and X. Jun, “Agile Web development with Web framework,” 4th International

Conference on Wireless Communications, Networking and Mobile Computing, IEEE, pp. 1–4, 2008. Available:

https://doi.org/10.1109/WiCom.2008.2960

[13] D. Bork, R. Buchmann, D. Karagiannis, M. Lee, and E. T. Miron, “An Open Platform for Modeling Method

Conceptualization: The OMiLAB Digital Ecosystem,” Communications of the Association for Information

Systems, vol. 44, pp. 673–697, 2019. Available: https://doi.org/10.17705/1CAIS.04432

[14] K. Kumar and R. Welke, “Methodology Engineering: a proposal for situation-specific methodology

construction,” Challenges and strategies for Research in Systems Development, John Wiley & Sons, Inc.,

pp. 257–269, 1992.

[15] D. Karagiannis, H. Mayr, and J. Mylopoulos, Domain-Specific Conceptual Modeling: Concepts, Methods and

Tools, Springer, 2016. Available: https://doi.org/10.1007/978-3-319-39417-6

[16] S. Kelly, K. Lyytinen, M. Rossi, and J. P. Tolvanen, “MetaEdit+ at the Age of 20,” Seminal Contributions to

Information Systems Engineering, Springer, pp. 131–137, 2013. Available:

https://doi.org/10.1007/978-3-642-36926-1_10

[17] Eclipse, Sirius. Available: https://www.eclipse.org/sirius/overview.html. Accessed on December 5, 2020.

[18] D. Karagiannis, R. A. Buchmann, P. Burzynski, U. Reimer, and M. Walch, “Fundamental conceptual modeling

languages in OMiLAB,” Domain-Specific Conceptual Modeling: Concepts, Methods and Tools, Springer,

pp. 3–30, 2016. Available: https://doi.org/10.1007/978-3-319-39417-6_1

[19] OMiLAB, BEE-UP. Available: https://www.omilab.org/activities/bee-up.html Accessed on December 5, 2020.

[20] OMG, IFML standard. Available: https://www.ifml.org. Accessed on December 7, 2020.

[21] E. Diaz, J. I. Panach, S. Rueda, and O. Pastor, “Towards a method to generate GUI prototypes from BPMN,”

Proceedings – International Conference on Research Challenges in Information Science (RCIS), IEEE,

pp. 1–12, 2018. Available: https://doi.org/10.1109/RCIS.2018.8406675

[22] R. A. Buchmann and D. Karagiannis, “Agile modelling method engineering: Lessons learned in the

ComVantage research project,” The Practice of Enterprise Modeling. PoEM 2015. Lecture Notes in

Business Information Processing, Springer, vol. 235, pp. 356–373, 2015. Available:

https://doi.org/10.1007/978-3-319-25897-3_23

[23] E. Laurenzi, K. Hinkelmann, and A. van der Merwe, “An agile and ontology-aided modeling environment,”

The Practice of Enterprise Modeling. PoEM 2018. Lecture Notes in Business Information Processing ,

Springer, vol. 335, pp. 221–237, 2018. Available: https://doi.org/10.1007/978-3-030-02302-7_14

[24] W3C, SPARQL. Available: https://www.w3.org/TR/rdf-sparql-query/. Accessed on December 1, 2020.

[25] MySQL AB, MySQL. Available: https://www.mysql.com. Accessed on December 6, 2020.

[26] N. J. Humfrey, EasyRDF. Available: https://www.easyrdf.org. Accessed on December 2, 2020.

[27] D. Bork, D. Karagiannis, and B. Pittl, “A survey of modeling language specification techniques,” Information

Systems, Elsevier, vol. 87, 2020. Available: https://doi.org/10.1016/j.is.2019.101425

[28] N. Prat, I. Comyn-Wattiau, and J. Akoka, “Artifact evaluation in information systems design-science research

– A holistic view,” PACIS 2014 Proceedings, AIS eLibrary, 2014. Available:

https://aisel.aisnet.org/pacis2014/23

[29] Mendix Platform. Available: https://www.mendix.com. Accessed on December 2, 2020.

https://doi.org/10.1109/WiCom.2008.2960
https://doi.org/10.17705/1CAIS.04432
https://doi.org/10.1007/978-3-319-39417-6
https://www.eclipse.org/sirius/overview.html
https://doi.org/10.1007/978-3-319-39417-6_1
https://www.omilab.org/activities/bee-up.html
https://www.ifml.org/
https://doi.org/10.1109/RCIS.2018.8406675
https://doi.org/10.1007/978-3-319-25897-3_23
https://doi.org/10.1007/978-3-030-02302-7_14
https://www.w3.org/TR/rdf-sparql-query/
https://en.wikipedia.org/wiki/MySQL_AB
https://www.mysql.com/
https://www.easyrdf.org/
https://doi.org/10.1016/j.is.2019.101425
https://aisel.aisnet.org/pacis2014/23
https://www.mendix.com/

