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Abstract. During the last two decades, data generated by Next Generation 

Sequencing Technologies have revolutionized our understanding of human 

biology and improved the study on how changes (variations) in the DNA are 

involved in the risk of suffering a certain disease. A huge amount of genomic 

data is publicly available and frequently used by the research community in 

order to extract meaningful and reliable gene-disease relationships. However, 

the management of this exponential growth of data has become a challenge for 

biologists. Under such a Big Data problem perspective, they are forced to delve 

into a lake of complex data, spread in over one thousand heterogeneous 

repositories, represented in multiple formats and with different levels of quality; 

but when data are used to solve a concrete problem only, a small part of that 

“data lake” is really significant; this is what we call the “smart” data 

perspective. By using conceptual models and the principles of data quality 

management, adapted to the genomic domain, we propose a systematic 

approach called the SILE method to move from a Big Data to a Smart Data 

perspective. The aim of this approach is to populate an Information System with 

genomic data which are sufficiently accessible, informative and actionable to 

extract valuable knowledge. 

Keywords: Conceptual Modeling, Data Quality, Big Data, Smart Data, 

Genomics. 

1 Introduction 

During the last two decades, advances in research technologies such as Next Generation 

Sequencing (NGS) have allowed us to read (sequence) DNA in a faster and cheaper way. Doing 

so was a challenge until the completion of the Human Genome Project in 2003 but, nowadays, is 

becoming a routine research tool. This has revolutionized our understanding of human biology 

and improved the study of how changes (variations) in the DNA are involved in the risk of 

suffering a certain disease [1]. 
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The vast majority of the information generated by biological research centers or 

biotechnological world-wide consortia is publicly available so that it can be used by the 

community: over one thousand repositories of open genomic data, which help biologists and 

clinicians to extract meaningful gene-disease associations, improving their ability to tackle 

complex diseases in a multidisciplinary and individualized way (precision medicine). However, 

genomic repositories have commonly been developed in an ad-hoc way, focused on addressing 

specific knowledge requirements, but not designed to share information among them. 

Consequently, these repositories lack the holistic conceptual view required by a field as 

complex as Genomics, leading to inconsistencies, redundancies, dispersion concerning data 

about a specific topic, different representations of the same concept and thus a high variability in 

their quality. The identification of novel disease-causing genes is highly dependent on our ability 

to gather and join all the relevant puzzle pieces together, reducing the noise as much as possible, 

which has become a challenge for biologists. 

On the one hand, there is a vast amount of data ready to be explored, but, on the other hand, 

only part of them is sufficiently valuable to be applied in clinical practice. Big Data essentially 

means all data, but data lakes by themselves are meaningless for biologists. In order to obtain 

true benefits, big genomic data needs to be turned into actionable small datasets, clearly focused 

on the purpose, insights and resulting outcomes that can be used in daily work: e.g. to understand 

the genomic nature of a particular disease. This is why there are also the “smart” data required to 

manage adequately the information in such a complex context as Genomics. The core of our 

work is to provide a systematic approach to handle the huge amount of open genomic data, in 

order to get a subset, of whatever size, which is valuable for biologists and also cross functional; 

this is what we mean by ‘from Big Data to Smart Data perspective’. 

Conventional Big Data processing can be adapted to the genomic domain in order to solve 

most of the problems related to heterogeneity, data cleaning and data integration. But it leaves an 

important problem unsolved: the lack of an ontological commitment to define basic biological 

concepts; for instance, changes in the DNA sequence have been traditionally named as 

“mutations”, but this term has become increasingly problematic because usage by scientists is 

not uniform and has developed a negative connotation [2]. Substantial discrepancies in the 

meaning and use of key biological terms constitute an issue of concern, because they guide the 

understanding and processing of genomic data. If this issue remains open, the link between Big 

Data and Smart Data cannot be efficiently established. 

On the other hand, data quality has not been given due attention even though analytics and 

outcomes are highly dependent on the quality of the data on which they are based. For instance, 

there are types of genomic databases  which are different as regards to their level of curation
1
: 

from redundant and non-curated data warehouses that store millions of genomic sequences, such 

as TrEMBL
2
, to highly accurate databases manually annotated and reviewed by experts in a 

specific field, for instance Swiss-Prot
3
. In such a critical context, as Genomics applied to clinical 

practice is, this aspect becomes especially relevant. The use of data quality management 

principles helps to select the appropriate repositories and the most valuable data, in order to 

ensure the higher veracity of the results. 

In this article, we present a systematic approach to extract small valuable datasets from the Big 

Data lake of Genomics, facing ontological and data quality challenges. The aim is to identify 

relevant variations in genes which are related to the risk of suffering a certain disease, and which 

will be used to populate a Genomic Information System (GeIS). Our proposal is based on two 

principles: 

 The use of conceptual models to provide sound and coherent structure to the integrated data. 

 The use of data quality principles to ensure that data are relevant and reliable enough for the 

task at hand. 

                                                 
1 Curation is the revision and annotation of biological data by experts in a specific field. 
2 http://www.uniprot.org/statistics/TrEMBL 
3 http://www.uniprot.org/statistics/Swiss-Prot 

http://www.uniprot.org/statistics/TrEMBL
http://www.uniprot.org/statistics/Swiss-Prot
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This article is structured as follows: in Section 2, we introduce the state of the art. Then, in 

Section 3 we present the “from Big Data to Smart Data” perspective applied to the genomic 

domain. In Section 4, we show how the Conceptual Schema of the Human Genome (CSHG) is 

useful to provide the ontological ground required to understand the key concepts of the domain. 

In Section 5, we explain the principles of Data Quality (DQ) which help to ensure the reliability 

required to apply the results to clinical practice. In Section 6, we present a practical example of 

how this approach can be applied: the SILE method, which acronym refers to the stages that 

make it up (Search, Identification, Load and Exploitation). Finally, we present the conclusions 

and suggested future work in Section 7. 

2 State of the Art 

Many of the underlying principles of Big Data have been explored by the research community 

for years in different domains. Nevertheless, theories and approaches for analyzing big genomic 

data are relatively recent [3], [4], [5]. NGS requires more and more sophisticated algorithms and 

high-performance parallel processing systems to analyze and extract knowledge from a huge 

amount of genomic and molecular data. In this context, emerging deep learning algorithms help 

biotechnology researchers to perform Big Data analysis [6]. But these technological 

requirements are expensive, time consuming and commonly out of reach of biologists and 

experts who use these data for clinical purposes. In this case, Big Data is useful to them only if 

they can do something with it in their everyday jobs. For many problems and questions, Smart 

Data itself is sufficient, as it creates and integrates small data "packages" and partitioning 

problems in a way that works across a wide range of people and organizations. 

Due to the complexity of Genomics, in this article we focus on a particular use of genomic 

data applied to clinical practice: the identification of DNA variations in genes which are related 

to the risk of suffering a certain disease. In this case, a huge amount of open data repositories is 

available and the number of public biological data sources cannot be precisely determined on 

account of their volatility. Online catalogs such as the ones provided by the Nucleic Acid 

Research Journal (NAR) [7] or the Human Genome Variation Society
4
 (HGVS), are useful to get 

some idea of the multitude of repositories which are publicly available. Furthermore, some 

repositories are created for a specific purpose or in the context of a particular research and they 

are not updated or maintained so, as time goes by, they are no longer accessible or useful. In 

Figure 1, an example of the evolution of the number or public repositories during the last 4 years 

is presented. Each data source has advantages and disadvantages, which must be considered 

thoroughly according to the task to be performed. This means we do not have to query all 

available data sources, but only those that are relevant, thus reducing the volume of data to 

manage.  

On the other hand, these data sources contain millions of records with different levels of 

quality due to the complexity of biological processes, the noisy nature of experimental data and 

the limitations of statistical analysis; besides, there is a bias due to the use of different 

sequencing technologies and sampling strategies. This is the reason why only part of this “data 

lake” is reliable enough to provide precise clinical diagnosis and treatments. 

The study of data quality began in the 1990s, but it was not until 2011 that ISO published the 

ISO 8000 data quality standard. Nowadays, over 20 countries participate in its development, but 

it is considered to be controversial and standards need to be as mature and as perfect as possible. 

At the same time, research about data quality in Big Data, and particularly in genomics has just 

started and there are not any sound results yet. Despite these challenges, the need to improve 

quality of genomic data is a key, not only to achieve competitive advantage through its analysis, 

but because decision making, based on low genomic data quality, may involve serious mistakes 

with important consequences when applied for clinical purposes. 

                                                 
4 http://www.hgvs.org/content/databases-tools 

http://www.hgvs.org/content/databases-tools
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Figure 1. Number of biological databases added and removed from the NAR catalog in the last 4 years 

Genomic databases differ not only in the scope of the information they represent, but also in 

the way the same information is modelled. This situation hinders the process of retrieval, 

annotation and integration of heterogeneous datasets. When the research community realized that 

this issue was becoming a serious problem, some solutions were proposed. To represent different 

biological domains, the first approach was to construct ontologies, with the aim of unifying 

knowledge and making it interoperable through consistent vocabularies. But these ontologies 

essentially became large terminological resources, used as a glossary of genomic terms that are, 

too often, heterogeneous, imprecise and even inconsistent when compared. Examples of such 

well-known types of ontologies include Gene Ontology (GO) [8], [9], which defines 

concepts/classes used to describe gene functions and relationships between them; Sequence 

Ontology (SO) [10], which defines a set of terms and relationships that describe the features and 

attributes of biological sequences; and Variation Ontology (VariO) [11], which defines the 

effects, mechanisms and sequences of genomic variations. Each of these ontologies describes a 

specific part of the genomic domain, but when we look for a common conceptual schema, in 

order to have a holistic view of all this knowledge, there is no clear solution. 

Some databases such as dbSNP
5
 provide schemas for explaining the structure of the data they 

store, but they are usually very complicated to understand. Additionally, they are focused on 

satisfying the needs they were created for, at which time the option of interoperating with other 

repositories was not considered. 

The idea of applying conceptual modeling to understand the genome has been explored by 

some authors. It was first introduced by Paton et al. in 2000 [12]. They proposed a set of data 

models to describe elements involved in transcriptional and translational processes, as well as the 

variant effects generated by them. Later on, Ram and Wei [13] also applied conceptual modeling 

principles in the context of 3D protein structure, and Bernasconi et al. proposed a conceptual 

model for describing metadata of experiments [14]. In any case, these approaches focus only on 

specific parts of the domain and do not provide the required global view. 

In the next section we introduce the “from Big Data to Smart Data” perspective applied to the 

genomic domain and show how the CSHG and Data Quality Methodology are the keys to 

achieving it. 

                                                 
5 https://www.ncbi.nlm.nih.gov/SNP/ 

https://www.ncbi.nlm.nih.gov/SNP/
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3 From Big Data to Smart Data Perspective 

The term “Smart Data” contrasts with the term “Big Data”, which usually refers to a 

combination of structured and unstructured data that may be measured in petabytes or exabytes. 

Smart Data, in contrast, consists of usable datasets derived from Big Data repositories. 

Volume, Velocity and Variety are the three Vs in the original definition of the key 

characteristics of Big Data according to the research report published by META Group [15]. 

Volume refers to the size of the data, Velocity refers to the speed of data generation and Variety 

refers to different types/sources of data. Since then, other factors have also been considered, such 

as Veracity (trustworthiness of the data obtained) and Value (usefulness of data) [16].  

As a huge amount of research has been done in Big Data processing, usually focused on 

Volume, Velocity and Variety, we are going to focus on how we can reduce the noise and 

identify the most reliable data that are useful for clinical practice (Veracity and Value). We 

propose that the correct path to achieve this goal, is to add conceptual modeling techniques and 

data quality management to traditional Big Data Processing, as can be shown in Figure 2. 

 

Figure 2. From Big Data to Smart Data perspective 

Most databases gather information from different biological contexts such as Epigenomics, 

Proteomics or Pharmacogenomics. The researchers may link datasets to combine information 

from multiple sources, in order to increase the richness of the information available to answer a 

research task. But the lack of consensus when defining basic biological concepts can be a huge 

problem when integrating information from different repositories. The use of a Conceptual 

Model (CM), provides the ontological basis to unambiguously define each biological concept, 

needed to identify the data in the repository, whatever the term is used to represent it. This helps 

to provide structure to the heterogeneous data managed, as well as making easier the access to an 

integrated dataset that can be used in daily work. The conceptual model can be used as a solid 

ontology representation to address issues of semantic integration between different datasets. 

On the other hand, the use of databases with large amounts of missing information, or that do 

not have rigorous and standardized data editing, cleaning, and processing procedures, increases 

the risk of inconclusive and potentially invalid results. After all, the value of the results is only as 

good as the quality of the data used. In respect of this issue, one question arises: How can a 

database be considered as relevant for the task at hand? The use of data quality management 

techniques is helpful in determining the most suitable data sources, and the application of them 

will be explained in Section 5. 
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In conclusion, the systematic application of conceptual modeling and data quality criteria is a 

key to creating the link between the Big Data perspective and the Smart Data perspective. It 

provides Veracity and Value to the final dataset that will be used in clinical practice, as can be 

shown in Figure 3. 

 

Figure 3. The 5 Vs of the Smart Data Perspective 

In the next section, we will introduce the Conceptual Schema of the Human Genome (CSHG), 

an essential component to provide structure to this complex domain and the starting point for 

identifying valuable genomic information. 

4 The Conceptual Schema of the Human Genome 

To achieve what we refer to as the “Smart Data” perspective presented in this article, we need a 

conceptual structure in which to store each piece of genomic data in the right place, regardless of 

the data's origin. To accomplish this goal, we propose the use of the Conceptual Schema of the 

Human Genome (CSHG) [17], [18]. 

The CSHG has been developed in close collaboration with experts in the domain. It is thus 

based on biological knowledge and is independent of any specific data sources. This 

characteristic helps the experts in the domain to understand the structure of the information 

without the need of studying the internal schema of each repository. The CSHG has five main 

parts, each one related to a specific domain view [17]: 

 The Structural view, focused on describing the structure of the genome, 

 The Transcription view, focused on describing the components and concepts related to 

protein synthesis, 

 The Variation view, describing the changes in the sequence of reference, 

 The Pathway view, describing information about metabolic pathways, 

 The Bibliography and data bank view, focused on describing where the data comes from. 

In order to accomplish our task (specified in Section 2), we need to mine those databases 

which contain the data specified by the conceptual model of relationships between genes and 

diseases. To accomplish this task, we must focus on the variations in the DNA sequence and 

their clinical significance (pathogenic or benign), as well as the evidence that supports this 

assertion. 

As an example of use, if we focus on the Variation view of the CSHG, we can identify what a 

variation is and which are its main components (see Figure 4).  
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Figure 4. Representation of a DNA variation based on the CSHG 

According to the schema, a variation is a change in the DNA sequence which occurs in a 

certain position inside a chromosome and, depending on its frequency and description, it can be 

classified into different types (Mutant, Polymorphism, Single Nucleotide Polymorphism, Copy 

Number Variation, Insertion, Deletion, Indel and Inversion).  

The advantage of the CSHG over other options is that it covers the entire structure of the 

genome; so data stored in different genomic repositories can be easily connected by using this 

structure. The use of the CSHG allows researchers to identify the relevant information needed to 

answer a knowledge requirement and thus obtain a notion of which type of data sources can 

provide it. 

The adaptability of conceptual models provides a flexible approach to extend them according 

to the evolution of the domain. As new discoveries are made, new concepts can be included in 

the schema, new relevant data sources can easily be considered and new attributes can be 

identified in order to improve the data analysis process. 

In the next section we will introduce how data quality principles are used to identify relevant 

repositories and reliable data within them. 

5 DQ Management Applied to Genomics 

Before one can address the issues involved in analyzing and managing data quality in the 

genomic domain, it is important to understand well what data quality actually means. Data 

Quality (DQ) has been defined by Wang and Strong [19] as “fitness for use”, i.e. the ability of a 

data collection to meet users’ requirements. DQ is evaluated by means of different dimensions: 
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this definition mainly depends on the context of use. A data quality dimension can be assessed 

by using specific metrics in order to get a quantitative measure that represents the quality of the 

data being managed. But to apply this knowledge properly, a sound methodology needs to be 

defined. 

A Data Quality Methodology can be defined as “a set of guidelines and techniques that, 

starting from the input information concerning a given reality of interest, defines a rational 

process for using the information to measure and improve the quality of data of an organization 

through given phases and decision points” [20]. We propose to use a Data Quality Methodology 

specifically for the genomic domain in order to (i) ensure Veracity (selection of high quality 

repositories) and (ii) provide Value (selection of high quality data from each repository). 

Using the CSHG as the conceptual core and the previously mentioned concepts of 

“dimension” and “metric”, the proposed Data Quality Methodology is divided into 5 phases: 

Dimension Description, Metric Description, Variable Selection, Minimum DQ Requirements 

and DQ Assessment (see Figure 5). 

 

Figure 5. Proposed Data Quality Methodology to ensure the veracity and value of the data 

The methodology must be based on a detailed description of the knowledge requirements to be 

achieved. In the next subsections, each phase of the methodology is going to be thoroughly 

explained. 

5.1 Phase I – Dimension Description 

The DQ literature provides an extensive classification of data quality dimensions. However, 

there are discrepancies in the definition of most of them due to the contextual nature of quality. 

The most important classifications of quality dimensions are provided by Wand and Wang [21], 

Wang and Strong [19], Redman [22] and Naumann [23]. Nevertheless, no general agreement 

exists on which set of dimensions defines the quality of data, or on the exact meaning of each 

dimension. Thus, it is very important to compose a detailed description of the dimensions that 

best fit our data quality requirements. 

Due to the specificity of the genomic domain, the first step in determining the relevant 

dimensions is to be able to understand the issues that affect the information. To accomplish this 

task, a study of the most common errors present in different well-known genomic data sources 
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has been performed [24]. The study allowed us to classify them into nine major quality 

dimensions, which can be seen in Table 1. 

Table 1. Name and description of the main quality dimensions determined 

Dimension Definition 

Accuracy Data corresponds to real-world values and is correct [36] 

Completeness 
The extent to which data is not missing and all necessary values are 

represented [26] 

Consistency 
Data must be consistent between systems and represented in the same format 

[19] 

Redundancy 
The extent to which the information is redundant or the database contains 

duplicate records [20] 

Currency The extent to which data is sufficiently up-to-date for the task at hand [22] 

Believability The extent to which data is regarded as true and credible [26] 

Relevancy Extent to which information is applicable and helpful for the task at hand [25] 

Reputation 
The extent to which information is highly regarded in terms of source or 

content [27] 

Accessibility Extent to which information is available, or easily and quickly retrievable [19] 

The selection of relevant dimensions in a given scenario is mostly application-dependent. For 

instance, as Believability is a key dimension in determining the quality of a genomic database, 

when measuring the quality of a specific variation for genomic diagnosis in a Precision Medicine 

context, we focus on Accuracy and Completeness. 

5.2 Phase II – Metric Description 

As mentioned before, a DQ metric is a quantitative indicator of an attribute or property that can 

be assessed so as to represent the quality of the data being measured. In general, multiple metrics 

can be associated with each data quality dimension. DQ metrics are mostly defined, ad hoc, to 

solve specific problems and thus, are dependent on the scenario being considered. Some authors 

such as [25] have defined methodologies that establish general principles in order to guide the 

definition of data quality metrics in a proper way. 

The same dimension can be used to assess quality in more than one scenario, each being 

distinguished by the metrics defined in each case. As an example applied to our work, 

Believability can be measured by two different metrics depending on the context: 

 Believability of a database: a metric to measure this dimension could be that the database 

must be supported by well-known institutions and its content reviewed by experts. 

 Believability of a variation: a metric to measure this dimension could be that there must be at 

least one publication with credible statistics that supports the association between the 

variation and the studied disease. 

For each dimension identified in the previous phase, at least one metric must be adequately 

defined in order to measure the global data quality. 

5.3 Phase III – Variable Selection 

The task to be performed must drive the choice of the particular pieces of information (variables) 

which are critical to achieve it. The description of the variables required is determined by the 

CSHG; and the specification of the ones which are going to be used in the DQ assessment 

process, is determined by the selected dimensions and their corresponding metrics. For instance, 

to measure the Believability of a variation we must focus on the number of publications related 

to it. According to the CSHG, the most suitable metric to measure this attribute is “pubmed_id”, 
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which is a unique identifier, provided by the bibliographic repository PubMed, to each 

publication it stores. If the variation has at least one PubMed id, then it passes the quality filter. 

5.4 Phase IV – Minimum DQ Requirements 

The aim of this phase is to specifically determine the minimum levels of quality that the selected 

variables must fulfil according to the metrics specified in Phase II. Concrete acceptance criteria 

must be assigned to each metric, e.g. the number of different submitters providing information 

about a gene-disease association must be at least two. 

One of the biggest concerns in any investigation is missing data (Incompleteness) because they 

can compromise the validity of the resource and any conclusions obtained by using that 

information. It is important to determine which variables are more or less likely to be missing, to 

define a priori an acceptable percentage of missing data, and to be aware of the effort that would 

have to be made to minimize the amount of missing information.  

In Table 2, the attributes of the CSHG have been categorized as “Required” if the values must 

be present, “Recommended” if the values can be missing but would provide interesting 

information about the variation, and “Other” if the values can be missing. 

Table 2. Classification of the attributes of the CSHG according to completeness requirements 

Class Required Recommended Other 

Species assembly scientific_name 

common_name 

ncbi_taxon_id 

date_assembly 

source 

Chromosome nc_identifier  name 

sequence 

Chromosome 

element 

chromosome_element_id 

specialization type = "gene" 

start_position 

end_position 

strand 

 

Gene id_symbol official_name 

biotype 

gene_synonym 

start_gene_ng 

end_gene_ng 

id_hugo 

description 

status 

gc_percentage 

Variation db_variation_id 

clinically_important 

 description 

other_identifiers 

associated_genes 

omim 

creation_version 

Precise position   

Indel   ins_sequence 

ins_repetition 

del_bases 

SNP   map_weight 

SNP Allele allele   

SNP Allele Pop frequency   

Population name size description 

population_id 

SNP Genotype name   

Certainty level of certainty   

Bibliography db name_db  url 

Bibliography 

reference 

bibliography_reference_id title 

date pub 

abstract 

publication 

authors 
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5.5 Phase V – DQ Assessment 

Once dimensions, metrics and minimum requirements are established a sound data quality 

assessment can be made over the databases and the information they store. The comparison of 

the collected information with the minimum acceptance criteria provide the required high-quality 

dataset which comes from the most adequate data sources and guides the decision making 

process. As an example, in Table 3 a summary of the steps followed to assess the Believability of 

a variation is shown. The example has been simplified, according to the steps previously 

explained, in order to ease understanding. 

Table 3. Example of how to determine the believability of a variation 

Phase Description 

Phase I 

Dimension Description 
Believability: The extent to which data is regarded as true and credible 

Phase II 

Metric Description 
Number of publications supporting the assertion 

Phase III 

Variable Selection 
pubmed_id 

Phase IV 

Minimun DQ criteria 
pubmed_id > 0 

Phase V 

DQ Assessment 

Variations without publications associated to it will be excluded 

(pubmed_id <1) 

Finally, in the next section we are going to explain how the CSHG and the DQ Methodology 

proposed can be joined together in order to accomplish our proposed “from Big Data to Smart 

Data perspective” for the genomic data management domain. 

6 From Big Data to Smart Data: The SILE Method 

In previous sections the needs of the CSHG and the description of a DQ Methodology to 

determine relevant information has been described. But, how can both proposals be combined in 

order to move from the Big Data perspective to the Smart Data perspective? 

In this section we present our proposal to provide a systematic methodological approach in 

order to answer this question for the genomic domain. It is the so called Search-Identification-

Load-Exploitation (SILE) method. Its main goal is to systematize the search and identification of 

genomic information to be loaded, analyzed and exploited by a Genomic Information System 

(GeIS) based on the Conceptual Schema of the Human Genome (CSHG). A summary of the 

activities taking place at each level of the method is defined in Table 4. 

Table 4. Description of each level of the SILE method 

Level Description 

(S) Search 

Determination of the information context, required to solve a concrete 

need, as well as the selection of data sources from which to extract 

information 

(I) Identification 
Determination of a reliable and relevant dataset to be used to populate a 

database which structure is delimited by the CSHG 

(L) Load Population of the database with the data identified in the previous level 

(E) Exploitation 
Extraction of knowledge from the database by using tools to analyse and 

interpret genomic data 

The proposal has been validated by populating the GeIS with relevant variations related to the 

risk of suffering the Early Onset type of Alzheimer’s Disease (EOAD), and made ready to be 

used by researchers in their clinical practice. 
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Alzheimer’s Disease (AD) is a type of dementia, so it mainly affects the capabilities and 

functionalities of the brain, decreasing them and hindering the patient’s normal life development. 

The Early-onset type starts to show symptoms before 65 years old (normally around 50) so it is 

essential to use truthful and contrasting information of high quality in the context of the clinical 

diagnosis. Due to AD being a degenerative neuronal disorder, stopping it in time is the key to 

increasing the quality of life of patients, which is only possible through specific studies of its 

genotype-phenotype relationship. 

In the next subsections we present the main purpose and the steps that are performed at each 

level of SILE, with the aim of determining the genetic causes of EOAD. 

6.1 Search 

The task previously determined dictates the type of data required; and the researcher must best 

match the data to the question; i.e. variations in the DNA sequence of genes related to the risk of 

suffering the Early Onset Alzheimer’s Disease (clinical significance). 

As has been explained previously, by using the CSHG, the most important attributes 

corresponding to each required piece of knowledge can be identified (the data context). This 

helps to select the most suitable and complete data sources to interrogate so as to obtain the 

required information. 

In order to accomplish the proposed task, the types of genomic data sources required are: 

databases of sequences (genes and chromosomes), databases with information about genotype-

phenotype relationships and databases that store scientific literature. 

Once the context is established, data sources suitable to provide the required data must be 

selected from among all the publicly available repositories. At this point, the previously defined 

Data Quality Methodology is useful to determine those sources with the higher quality according 

to our DQ requirements. 

First of all, a set of interesting DQ dimensions to be checked has been selected: Believability, 

Relevance, Reputation, Currency and Accessibility. By using the NAR Catalog, we performed a 

research of the databases which belong to the type of genomic data sources considered as 

relevant and, as a result, 43 repositories have been analyzed: 7 databases of sequences, 6 

databases about the human genome, 27 databases about human genes and diseases, and 3 

databases about scientific literature. Finally, 7 of these have been selected as the most reliable for 

extracting the required information. The metrics that are used to select the databases are listed 

below: 

 Believability Dimension:  

- M1: The information stored in the database must be manually curated or reviewed by 

experts. This type of database has proved to be less error-prone than those which use 

algorithms to annotate the information [28]. 

- M2: There are quality controls to ensure the correctness of the submitted information 

(e.g. submission forms, automated control of HGVS expressions, etc.). 

 Relevancy Dimension:  

- M3: The database contains enough information and is useful to determine the required 

data, according to the attributes determined by the CSHG. 

 Reputation Dimension:  

- M4: The database must be maintained or supported by international or well-known 

national research centers, institutions or associations. 

 Currency Dimension: 

- M5: The database must be active and frequently updated as well as provide enough 

information about it; e.g. the date of the last update and the database version. 

 Accessibility Dimension:  

- M6: The information must be public and freely accessible. 

- M7: The database must provide mechanisms to download the search results. 
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- M8: It is highly recommended that the database provides ways to allow programmatic 

access to the information stored. 

In Table 5, we have summarized the results of the analysis of the top 10 repositories in order 

to clarify how the selection of the final set of databases has been performed. The results have 

been sorted according to the number of filters passed. 

Table 5. Data Quality Assessment of 10 biological data sources (N/A: Not Applicable) 

 
Believability Relevancy Reputation Currency Accessibility 

M1 M2 M3 M4 M5 M6 M7 M8 

ClinVar 
        

Ensembl 
        

dbSNP 
        

RefSeq 
        

NCBI-Gene 
        

PubMed N/A N/A 
      

AlzForum 
       

 

LitVar BETA version 
      

SNPedia   
    

 
 

AD&FTDMDB
6
 

   
 >1 year 

 
  

We have selected the first 7 databases: 5 of these belong to the National Center for 

Biotechnology Information of the United States
7

 (NCBI). This center is part of a global 

consortium that shares information about advances in science and health, by providing access to 

biomedical and genomic information. Most of the databases supported by NCBI are publicly 

accessible. The information about the structural elements of the DNA sequences is retrieved 

from the NCBI Reference Sequence Database
8
 (RefSeq), an integrated and non-redundant set of 

reference sequences. These sequences belong to the reference genome (also known as reference 

assembly) which is a digital nucleic acid sequence database, assembled by scientists as a 

representative example of a species’ set of genes. Specific information about Genes is retrieved 

from NCBI Gene
9
, a repository of integrated information from a wide range of species. The 

information about bibliography is retrieved from PubMed
10

, a repository which stores more than 

28 million citations for biomedical literature. 

The information about variation-disease relationships comes from different resources, due to 

the fact that each database stores information about a certain type of variations or diseases. In our 

case we have selected two databases which belong to NCBI: (i) ClinVar
11

, a public archive of 

reports about the relationships among different types of human variations and phenotypes, with 

supporting evidence; (ii) dbSNP
12

, a public archive of short sequence variations, including 

single-base nucleotide substitutions, small-scale multi-base deletions or insertions, and 

microsatellite repeats. In addition, two more well-known databases are used to extract 

information: (i) Ensembl
13

, a repository which provides comparative information about different 

                                                 
6 Alzheimer Disease & Frontotemporal Dementia Mutation Database 
7 https://www.ncbi.nlm.nih.gov/ 
8 https://www.ncbi.nlm.nih.gov/refseq/ 
9 https://www.ncbi.nlm.nih.gov/gene/ 
10 https://www.ncbi.nlm.nih.gov/pubmed/ 
11 https://www.ncbi.nlm.nih.gov/clinvar/ 
12 https://www.ncbi.nlm.nih.gov/projects/SNP/ 
13 https://www.ensembl.org/index.html 

https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/refseq/
https://www.ncbi.nlm.nih.gov/gene/
https://www.ncbi.nlm.nih.gov/pubmed/
https://www.ncbi.nlm.nih.gov/clinvar/
https://www.ncbi.nlm.nih.gov/projects/SNP/
https://www.ensembl.org/index.html
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species, and tools to support research in many different areas, including gene-disease 

associations, – this database is supported by the European Molecular Biology Laboratory's and 

European Bioinformatics Institute (EMBI-EBI); and (ii) AlzForum
14

, a platform to disseminate 

evolving knowledge around basic, translational, and clinical research in the field of Alzheimer’s 

Disease. 

All the selected databases fulfill the established DQ requirements. As can be shown in Figure 

6, each database provides information about a specific area of the CSHG. This helps to join 

together, under a holistic view, all the information required to get a better understanding of the 

disease. 

 

Figure 6. Distribution of the selected databases according to the CSHG and their areas of knowledge 

Some of the reasons why the other databases were excluded are: inactivity of the repository 

(e.g. AD&FTDMDB), lack of revision from experts (SNPedia) or not enough data about the 

evidence that supports the relationship between the variation and the disease. LitVar is a special 

case, due to the fact that it is a useful database supported by NCBI; but it is still under 

development and, currently, the available release is a BETA version. This affects the 

believability of the information provided. 

6.2 Identification 

The identification level is a process consisting of two parts: 

 Identification of the most relevant and accurate data from the genomic repositories selected 

in the Search level. 

 Determination of correspondences between the attributes of the genomic repositories and the 

attributes in the Human Genome Database (HGDB). The HGDB is the core of the GeIS and 

is based on the structure provided by the CSHG. 

The genomic repositories selected in the Search level store a multitude of variations associated 

with Alzheimer Disease, as well as a huge amount of metadata related with them. For instance, 

ClinVar stores 221 variations, Ensembl – 1,020 and AlzForum – 355. But not all of them are 

useful for clinical purposes. Their applicability depends on multiple variables such as the size 

and specificity of the population selected, within which the study is to be performed, the strength 

of the evidence which supports the association with the disease or the techniques used to draw 

the conclusions. 

                                                 
14 https://www.alzforum.org/ 

https://www.alzforum.org/
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In order to select clinically relevant genes and variations, a new set of data quality dimensions 

has been defined: Accuracy, Completeness, Consistency, Believability and Relevancy. The 

metrics used to determine relevant variations are listed below. 

 Accuracy Dimension:  

- M1: Review attributes liable to be error-prone. Syntactic errors must be checked using 

controlled vocabularies and specific data dictionaries. 

 Completeness Dimension:  

- M2: The minimum information required to be stored in the HGDB is present. These 

attributes have been determined during Phase IV of the DQ Methodology. 

 Consistency Dimension:  

- M3: The information about the variations is defined by using standard vocabularies and 

verified ontologies to determine critical attributes such as HGVS expressions, 

pathogenicity or functional effects. 

- M4: There must be no conflicts in the clinical interpretation of each variation. 

- M5: There must be no conflicts among databases related to the structural characteristics 

of the variation. 

 Believability Dimension:  

- M6: Each variation must have significant medical or genealogical consequences and be 

reproducible (e.g. the reported consequence has been independently replicated by at least 

one group, besides the first group reporting the finding).  

- M7: The relationship between the variation and the disease must have at least one link to 

a published, peer-reviewed paper with credible statistics and free access. 

 Relevancy Dimension: 

- M8: The Minor Allele Frequency (MAF) of the variation must be less than the frequency 

of the phenotype in the population. 

- M9: The inheritance pattern, penetrance and mechanism of the variant must be 

consistent with the disease. 

- M10: The studies provided by the bibliography must have at least 500 participants and it 

is desirable that they are replicated. 

- M11: For pathogenic variants the Odds Ratio must me greater than 1, and for protective 

variants the Odds Ratio must be less than 1.  

- M12: For Genome Wide Association Studies (GWAS) the p-value must me less than 

5x10
-8

. 

Metrics M1, M2 and M3 help to identify errors that must be solved before the information is 

stored in the database and presented to the user. Metrics M4, M5, M8 and M9 help to identify 

conflict in the information provided from different repositories that could affect the Veracity of 

the information, for instance, there could be different interpretations of pathogenicity for the 

same variation. The rest of the metrics help to ensure that the information selected is sufficiently 

relevant for the task at hand. 

This strategy allowed us to identify 24 clinically relevant variations as the most meaningful 

ones. The process that was followed can be seen in Figure 7. Starting from the databases that 

store information about variations and diseases, the metrics were applied in a certain order to 

ensure the effectiveness of the process. Because the same variation can be stored in different 

databases, it is important to spot duplicate entries before starting the identification process. The 

issues associated with this task are explained in the next subsection. The RefSeq, NCBI Gene 

and dbSNP databases were used to complete the required information, necessary due to the 

nature of these repositories. As the identification process progresses, the number of variations is 

reduced. Finally, the variations from the original dataset are classified into 4 different categories: 

variations discarded due to contradictory evidence, variations discarded due to the lack of 

evidence associated to the disease, variations discarded due to there not being enough statistical 
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relevance and variations accepted as relevant. This classification improves the traceability and 

replication of the results.  

It is important to notice that most of the variations were discarded due to the lack of relevant 

statistical evidence. This is caused by the characteristics of the disease. EOAD is a rare type of 

Alzheimer so the studies are performed over small populations or delimited families. Because of 

that, the evidence currently available is not enough to be used in clinical practice and more 

research needs to be done.  

 

Figure 7. Flowchart of relevant data identification. The reduction in the number of variants is represented 

between brackets. The number of articles initially retrieved from PubMed is 1 264. 
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The information associated with the final set of variations is summarized in Table 6.  

Table 6. Relevant variants for Early Onset Alzheimer’s Disease ordered by number of associated 

publications. Ref. represents the original allele, Alt. represents the change which has occurred in the 

location of the chromosome specified by Chr (Position), and Num. Public. represents the number of 

publications associated with the variation. 

Variation ID Chr (Position) Ref. Alt. Num. Public Gene 

rs63751106 chr14 (73640351) T C 7 PSEN1 

rs63751416 chr14 (73683878) C G 7 PSEN1 

rs63750900 chr14 (73664775) G A 6 PSEN1 

rs63751024 chr14 (73659501) T C 6 PSEN1 

rs63749805 chr14 (73640285) C T 5 PSEN1 

rs63750323 chr14 (73683837) G C 5 PSEN1 

rs63751032 chr14 (73685864) T G 5 PSEN1 

rs63749835 chr14 (73659507) T C 4 PSEN1 

rs63750450 chr14 (73640279) A G 4 PSEN1 

rs63750730 chr14 (73640282) C T 4 PSEN1 

rs63749962 chr14 (73640278) T G 3 PSEN1 

rs63750004 chr14 (73640363) T C 3 PSEN1 

rs63750053 chr14 (73659429) G T 3 PSEN1 

rs63750569 chr14 (73659419) G A 3 PSEN1 

rs63750646 chr14 (73683855) G C 3 PSEN1 

rs63751399 chr14 (73637755) T C 3 PSEN1 

rs63750687 chr14 (73683845) C G 2 PSEN1 

rs63750779 chr14 (73664769) C T 2 PSEN1 

rs63750907 chr14 (73640375) C T 2 PSEN1 

rs63751003 chr14 (73659443) C T 2 PSEN1 

rs63751130 chr14 (73659506) C G 2 PSEN1 

rs63750298 chr14 (73673096) A C 1 PSEN1 

rs63750299 chr14 (73653598) T G 1 PSEN1 

rs63750863 chr14 (73664820) C T 1 PSEN1 

All of these variations affect processing or production of beta-amyloid, the protein fragment 

that is the main component of plaques in the brain. Plaques are abnormal clusters of protein 

fragments, build up between nerve cells.  Beta-amyloid is a prime suspect in the decline and 

death of brain cells. Several drugs, currently under development, target beta-amyloid as a 

potential strategy to stop the disease or significantly slow its progression [29], [30]. This 

corroborates the importance and relevance of the selected variations. 

Once the relevant variations are determined, the next step is to identify which data must be 

extracted from each repository, in order to be stored in the HGDB. The information must be 

sufficient to allow the unambiguous identification of variations in a patient’s sample, as well as 

provide enough data about their characteristics to support a genetic diagnosis. Each genomic 

repository provides different ways of accessing information as well as different data formats 

(VCF format, tabular text files, XML, etc.). 

Another problem is that, due to the lack of standards in representing biological information, it 

is common to find different ways of representing the same concept. For instance, there are 

different ways to determine which nucleotides are affected by a variation: 

 dbSNP presents the nucleotides as two fields named “Ancestral Allele” and “RefSNP 

Alleles”. If the ancestral allele is an Adenine (A) and the RefSNP allele is a Guanine (G) this 

means that in a certain position of the DNA sequence, an A is changed by a G. 

 ClinVar uses the HGVS
15

 Nomenclature to represent variations where a change of an 

Adenine and a Guanine are represented by a string such as NG_027670.1:g.292683A>G. 

                                                 
15 HGVS Nomenclature: http://varnomen.hgvs.org/ 

http://varnomen.hgvs.org/
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Even when both examples represent the same correct information, data must be extracted 

using different approaches in order to ensure consistency. 

Once the information from each database is identified, the next step is to map it to the 

structure of the HGDB. Additionally, the mechanisms to solve every possible inconsistency must 

be clearly defined in order to be implemented in the next level of SILE. 

6.3 Load 

Using an Extract-Transform-Load (ETL) process, the relevant data related to the variations 

identified at the previous level are loaded into the HGDB. By using the Application 

Programming Interface (API) provided by the selected data sources to access their content, a 

specific wrapper for each repository has been developed to extract the required data. 

At this level, the inconsistencies identified previously must be solved so as to be adequately 

stored in the database. This is the objective of the subsequent Transform process which ensures 

the Consistency of the system. The difficulty of the transformation process depends on the 

complexity of the field and its representation within each data source. 

One of the common problems to be faced when integrating the information from the selected 

databases is the recognition, of duplicate entries. As can be seen in Figure 8, if we compare the 

original results of the databases that store information about genotype-phenotype relationships 

(variations), we can observe that 56 of them are common to all the repositories.  

 

Figure 8. Common variations in three of the selected genotype-phenotype databases 

Due to the lack of representation standards, the intersection of results necessitates verification 

if there are discrepancies in the information associated with each variation. For instance, it is 

common to find conflicts in the location of the variation in the genome. This happens because of 

the use of different reference sequences to locate the variations, which leads to discrepancies in 

the start and end positions. Ensembl uses the genome reference version GRCh38 (the latest one), 

ClinVar uses both versions and AlzForum uses the previous one (GRCh37). As a consequence, 

there is a requirement to select one of the reference sequences and translate all values to the new 

coordinates. Another common error is related to the gene affected by the variation. Sometimes 

the variation occurs in a sequence between two genes (intergenic) and the database shows the 

nearest gene to the variation. This leads to confusion because the variation is not located in that 

specific gene and it may be that its function is not affected. It is important to take this situation 

into account because knowledge evolves quickly and, in the intergenic region, a new gene can be 

found at any time. An example of this situation occurs when the variation is mapped according to 

old reference sequences.  

Another common source of errors is related to the reference and alternate alleles that indicate 

the change which occurs in a certain position. The DNA is composed of two complementary 

chains called forward strand and reverse strand. Depending on the strand, the alleles are 

different, but not all the databases provide information about the strand used. This identification 
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is the key, when we try to identify the variations present in a patient’s sample, to identify 

precisely a specific variation leading to an important problem of missing information. 

Due to the lack of consensus in the use of standard terminology, it is common to find 

inconsistencies in the nomenclature related to the type of variations. For instance, Ensembl 

considers 28 types of variations and ClinVar considers 31 types, based on the type of change 

(insertion, deletion, etc.). Nevertheless, AlzForum classifies the variations according to their 

molecular consequence as well as the nucleotides changed (e.g. “Point, missense and GAC to 

CAC” is type of variation D678H). This situation requires understanding of the ontology used by 

each data source, in order to create a mapping of the different terms that would guarantee the use 

of a unified terminology. A similar problem occurs with the name of the disease (phenotype) 

associated to the variation. There are different ontologies used to classify traits and diseases such 

as the Human Phenotype Ontology [31], Human Disease Ontology [32] and MedGen
16

. In this 

case the mapping of terms is not a trivial task due to the complexity of the disease types and 

subtypes. 

All the problems previously mentioned hinder the process of finding duplicate entries and, in a 

general way, the entirety of the integration. 

Once the errors have been corrected and the load has been finished, the HGDB will store a set 

of variations selected according to the DQ established and that are ready to be analyzed by 

specific tools, in order to extract the underlying knowledge. 

6.4 Exploitation 

The aim of the Exploitation level is to extract knowledge from the information system. 

Nevertheless, this is not a trivial task. Several tools have been developed to support researchers 

in genetic data analysis. However, the lack of intuitive and interactive-usable mechanisms of 

such tools, transforms the analysis activity into a complex and time-consuming task. In order to 

provide a solution useful for clinical purposes, the data exploitation tools must enhance data 

discovery, enlarge visualization, allow the performance of data analysis operations and 

contextualize data by augmenting it [33]. One of the tasks that can be performed is related to the 

enhancement of Precision Medicine (PM). As it has been explained in the introduction, PM is an 

emerging approach for disease treatment and prevention that takes into account, for each person, 

individual variability in genes, environment, and lifestyle. This approach allows doctors and 

researchers to predict more accurately which treatment and prevention strategies for a particular 

disease will work in which groups of people. This is in contrast to a one-size-fits-all approach, in 

which disease treatment and prevention strategies are developed for the average person, with less 

consideration for the differences between individuals.  

One of the pillars of PM is the genetic diagnosis which consists of the identification of 

potentially damaging variations in the DNA of a patient (see Figure 9).  

 

Figure 9. Architecture of a Genomic Information System (GeIS) for genetic diagnosis 

                                                 
16 https://www.ncbi.nlm.nih.gov/medgen/ 

https://www.ncbi.nlm.nih.gov/medgen/
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Following this approach, a tool called VarSearch [34] has been developed, in order to point 

out genetic variations present in a patient’s sample. The information about the variations 

presented in the sample are stored in Variant Call Format
17

 (VCF) files, a standard widely 

accepted by the biological community. The VCF files are processed by VarSearch in order to 

determine which variations within the file are also among those stored in the HGDB. As a result, 

a personalized report is generated, indicating the risk of suffering the disease. 

In addition, VarSearch allows the researcher to go into detail about the characteristics of the 

variations found and the evidence that corroborates their relationship with the disease of interest. 

As all the information has been extracted from public repositories, it confirms NCF as being a 

valuable diagnosis tool for an advanced medicine in a precision working environment. 

7 Conclusions and Future Work 

The interest in moving from a Big Data to a Smart Data perspective comes from the need to 

extract relevant data that can be used in daily work. This is especially important in fields such as 

genomics applied to clinical practice, due to the increasing number of public resources that are 

becoming available, as well as their variable level of quality. 

In this article, we have established the importance of using Conceptual Models and Data 

Quality Methodologies to define a roadmap in order to move from the Big Data perspective to 

the Smart Data perspective. The lack of an ontological commitment to define core biological 

terms is solved by using the CSHG. The variable level of quality, which affects the information 

available, is managed by the development of a Data Quality Methodology based on specific 

dimensions and metrics. 

In order to make the huge amount of available information affordable, both solutions (CSHG 

and Data Quality Methodology) have been combined to develop a Genomic Information System 

(GeIS) with the aim of supporting the identification of clinically relevant variations in a patient’s 

sample. The consolidation has been made by defining SILE, a methodological approach whose 

main goal is to systematize the search and identification of genomic information to be loaded, 

analyzed and exploited by a GeIS. 

As a proof of concept, SILE has been applied under the context of searching relevant genes 

and variations related to the risk of suffering Early Onset Alzheimer’s Disease (EOAD). Due to 

the neuronal degeneration and the early appearance of its symptomatology, specific studies about 

its genetic characteristics are the key to increasing the quality of life of patients. SILE acts as a 

valuable tool that experts can use to manage the data which are relevant and sufficiently reliable 

for this task. A summary of the SILE method and the DQ dimensions used can be seen in 

Figure 10.  

The method has been successfully applied to identify the risk of suffering other diseases such 

as Neuroblastoma [35]. Currently, it is also being used to extend the underlying HGDB with 

information related to Crohn’s Disease, migraine, epilepsy and breast cancer. Moreover, a 

project in collaboration with clinical experts in lung cancer from the “Hospital de Clínicas” in 

Asuncion, Paraguay, is exhibiting promising development. 

Genomics research is under constant evolution and data are generated quicker and quicker. 

The perspective of Big Data to Smart Data requires that our strategy must be able to adapt to any 

changes and new findings. The refinement of the tasks to be performed at each level of SILE, the 

evolution of the CSHG and the quality controls that are applied, conform to a cyclical process 

that must be continuously refined. This ensures the fulfillment of knowledge needs as long as the 

evolution of the domain continues. 

                                                 
17 http://www.internationalgenome.org/wiki/Analysis/vcf4.0/ 

http://www.internationalgenome.org/wiki/Analysis/vcf4.0/
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Figure 10. The SILE Method 
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