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Abstract. Capacity management approaches optimize component utilization 

from a strong technical perspective. In fact, the quality of involved services is 

considered implicitly by linking it to resource capacity values. This practice 

hinders to evaluate design alternatives with respect to given service levels that 

are expressed in user-centric metrics such as the mean response time for a 

business transaction. We argue that utilized historical workload traces often 

contain a variety of performance-related information that allows for the 

integration of performance prediction techniques through machine learning. 

Since enterprise applications excessively make use of standard software that is 

shipped by large software vendors to a wide range of customers, standardized 

prediction models can be trained and provisioned as part of a capacity 

management service which we propose in this article. Therefore, we integrate 

knowledge discovery activities into well-known capacity planning steps, which 

we adapt to the special characteristics of enterprise applications. Using a real-

world example, we demonstrate how prediction models that were trained on a 

large scale of monitoring data enable cost-efficient measurement-based 

prediction techniques to be used in early design and redesign phases of planned 

or running applications. Finally, based on the trained model, we demonstrate 

how to simulate and analyze future workload scenarios. Using a Pareto 

approach, we were able to identify cost-effective design alternatives for an 

enterprise application whose capacity is being managed. 

Keywords: capacity planning, performance prediction, response time, server 

consolidation, utilization, optimization, enterprise applications. 

1 Introduction 

The performance of enterprise applications (EA) is critical to the successful execution of 

corporate business functions and business tasks [1]. Therefore, it must not be degraded 

significantly [2] in order to support business processes effectively. Negative consequences of 

performance failures may include damaged customer relations, lost income, increased 

                                                 

* Corresponding author 

© 2017 Hendrik Müller et al. This is an open access article licensed under the Creative Commons Attribution License 

(http://creativecommons.org/licenses/by/4.0). 

Reference: H. Müller, S. Bosse, and K. Turowski, “Capacity Management as a Service for Enterprise Standard Software,” 

Complex Systems Informatics and Modeling Quarterly, CSIMQ, no. 13, pp. 1–21, 2017. Available: 

https://doi.org/10.7250/csimq.2017-13.01 

Additional information. Author's ORCID iD: H. Müller – orcid.org/0000-0002-5083-536X. Article PII S225599221700074X. 

Article received: 2017 September 29. Accepted: 2017 December 20. Available online: 2017 December 29. 

http://creativecommons.org/licenses/by/4.0
https://orcid.org/0000-0002-5083-536X
https://orcid.org/0000-0002-5083-536X


2 

 

maintenance costs, delayed project schedules, and project failures [3]. In addition, EAs tend to 

grow depending on a changing customer base, new product releases, new divisions and 

acquisitions [1]. Consequently, they need to be monitored and managed continuously and 

proactively in order to ensure a stable quality of service that is aligned to business requirements 

[4]. On the other hand, information technology (IT) represents a major cost factor for enterprises. 

According to the worldwide IT spending forecast by Gartner, overall IT costs will grow by 2.6 

percent to a total of 3.55 trillion dollars in 2018. Particularly, costs for enterprise software will 

grow by 7.1 percent [5]. Hence, IT Service Management (ITSM) frameworks such as ITIL and 

ISO 20000 embed the task of balancing performance and operational costs into the capacity 

management process [6]. Since energy costs are a major factor in the total cost of ownership of 

modern data centers [7], [8], [9], savings can be achieved by avoiding idle resources, which may 

consume up to 70 percent of their peak power [10]. Therefore, the provisioning of minimum 

hardware capacity that still ensures cost-effective operations, aligned to given service levels and 

business constraints, is at the heart of capacity management decisions. For this purpose, 

differently sized design alternatives need to be evaluated for the EA under study. Capacity can 

be defined as the maximum throughput an enterprise application, hereafter also referred to as 

service, can achieve with given response time thresholds for different transaction types [11], 

[12]. While capacity planning is a crucial task that necessitates to foresee the expected workload 

of a planned EA, capacity management refers to the optimization of existing EAs [13].  

In the latter case, workload data may be available as a result of application performance 

monitoring (APM) activities and can be used to determine required capacity levels for different 

time intervals. Capacity management should be a continuous task [4] in order to address existing 

optimization potential which results from low server utilization levels. According to several 

studies, average server utilization levels usually vary between 10 and 50 percent [9], [10], [14]. 

In June 2016, the United States Data Center Energy Usage Report forecasted the average 

utilization of active volume servers to be approximately 15 % for internal data centers and 25 % 

for data centers of service providers in 2020 [15]. According to this report, volume servers 

represent by far the largest share of total servers in data centers and show an adverse power 

proportionality in the effect of consuming about 50 percent of their maximum power usage at 

low utilization levels of around 10 percent. Therefore, raising utilization levels barely effects 

power consumption but enables to shut down idle servers after their running services have been 

relocated in accordance to a globally optimal distribution. Since only active servers where 

considered in the report, an additional portion of inactive servers further increases the 

optimization potential. On this matter, recent studies state that up to 30 percent of all servers 

operated in the US were not used in 6 months or more and, thus, termed as comatose [16], [17]. 

Consequently, several approaches exist to address existing optimization potential by 

consolidating services on a reduced number of servers in accordance to their workload profiles 

[9]. Typically, such approaches formulate one- or multidimensional optimization problems 

having one or multiple resource dimensions and, optionally, one time dimension. While the 

majority of consolidation approaches focuses on demands and capacities in terms of the CPU, 

few approaches take also main memory consumption into account [18]. Since optimization 

problems are known to be NP-hard, solution candidates are calculated using metaheuristics or 

genetic algorithms. We believe that such approaches are an excellent example of creating real 

business value from interdisciplinary research that addresses requirements from business 

informatics by applying solution algorithms to a mathematical problem representation. As a 

matter of fact, the majority of algorithms we studied come, under their individual assumptions, to 

feasible solutions where expected resource demands of services do not exceed the capacity limits 

of the assigned servers. However, solution feasibility is usually evaluated from a strong technical 

perspective, e.g., the fitness function of a genetic algorithm rates a solution candidate’s 

feasibility with respect to capacity savings. As stated by Stillwell et al., “in practice, however, 

resource management objectives are expressed based on higher level metrics that are related to 

user concerns, such as service response time or throughput” [19]. Likewise, service level 
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agreements (SLA) are typically expressed from a user perspective to ensure measurability. 

Server consolidation approaches consider those higher level metrics only indirectly by mapping 

them to resource capacity values in a reasonable way [19], e.g., a certain amount of CPU 

capacity allows for the execution of a certain number of business transactions per hour [20]. Yet 

this high level abstraction does not allow to qualify response times or other related user-level 

metrics and strongly limits solution evaluation with respect to given SLAs. Consequently, some 

approaches account for this aspect by providing means to add spare capacity of up to 50 percent 

per service in order to ensure acceptable response times [21], [22]. This strategy, in turn, 

dramatically lowers the addressable optimization potential to an extent that questions the entire 

consolidation effect. The concept of spare capacity is certainly valid to catch unpredictable load 

peaks but should not be overused to compensate the missing link between quality of service 

(QoS) and resource capacity. Therefore, we claim that current approaches lack to directly 

evaluate identified solutions with respect to QoS aspects. On this matter, an estimation of 

expected service response times is desirable in order to both increase the addressable 

optimization potential and to allow for mapping the costs of solution candidates to SLAs. Hence, 

to support decisions as part of a capacity management process, the performance of an enterprise 

application needs to be predicted and evaluated considering different design alternatives.  

As stated by the authors of [11], ideally, a system comparable to the final production 

environment would be desirable during capacity testing. However, this precondition is rarely 

fulfilled and smaller scale systems are hardly comparable [11]. As a result, model-based 

techniques evolved to assess future system performance and traditional prediction literature 

heavily relies on queuing networks and discrete event simulation [23]. Unfortunately, such 

concepts and methods related to performance modeling and analysis are largely unknown to 

most IT practitioners [24] and, thus, are rarely applied in industry [25]. Main reasons include a 

generally high time effort in construction and analysis of analytical models [26] as well as 

essential expert knowledge about the model itself, the system to be implemented and its 

dependencies which may not be available [27]. In addition, the credibility of obtained results 

remains questionable until their validation in later lifecycle phases [6]. Therefore, measurement-

based approaches are more frequently used in practice than model-based approaches due to their 

effectiveness in operation [27]. As a costly consequence, performance requirements are 

considered lately and performance testing is done when an implemented or relocated system is 

about to go live [28], [29]. This practice was originally termed by [30] as “fix it later approach”, 

but can be observed in today’s projects either [3]. The correction of performance failures at that 

last stage is inefficient, expensive, delaying and professionally irresponsible [29], [31]. "We 

cannot do anything about performance until we have something running to measure" is a 

statement from practice that was identified by [3] in 2011 as a frequent argument for managing 

performance reactively.  

However, we argue that, due to the intensive use of standard software in the field of enterprise 

applications [32], [33], there is actually something running to measure, even though it is likely 

not operated within the enterprise that applies capacity management. If widespread and well-

established standard software is utilized, there is a high likelihood that components of the system 

whose capacity is being managed, are already in production in various environments. Moreover, 

those components may already produce performance-related log data as part of APM activities 

[13], [34], [35], [36]. Thus, measurement data are present allowing for measurement-based 

techniques to be used for performance assessment in the design or redesign phase of planned and 

existing enterprise applications. Such data contain information in terms of performance affecting 

patterns that need to be extracted and processed in order to transfer the implicit knowledge to 

other environments. For this purpose, machine learning techniques can be utilized in order to 

design a pure black box approach that does not require domain-specific and potentially 

expensive expert knowledge about the system structure and behavior. In [6], it was shown that 

predictions of mean response times per business transaction on a cross-organizational data basis 

can be as accurate as model-based approaches. However, the authors did not demonstrate how to 
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utilize the prediction results in the context of planning and managing the capacity of enterprise 

applications with respect to costs. Main activities in this field such as the analysis of future 

scenarios and the prediction-based decision support were not yet considered. Apart from that, 

many efforts have been conducted to describe those activities in a systematic way. One particular 

capacity planning process that is consistently being used and adapted [11], was developed by 

[37], although it was originally designed for web services.  

In this article, based on the groundwork of [6], we designed a multi-organizational capacity 

management process that is particularly beneficial for users of enterprise standard software. 

While based on the main activities of the process by [37], it integrates specifications from the 

domain of enterprise applications with regard to their common characteristics. Furthermore, we 

added activities from the domain of data science to ensure a structured usage of machine learning 

techniques while building standardized performance models. Those activities are carried out by 

an internal or external capacity management provider who collects and processes measurement 

data from various running EAs in order to build prediction models for each standard software 

component. This way, predictions can be consumed as a service using shared models, leveraging 

economies of scale and reducing capital costs of the capacity management consumer. After 

models were trained and successfully evaluated, they allow predicting service performance for 

different future scenarios. Within this process activity, we integrated the concept of Pareto-

optimal solutions to identify cost-effective design alternatives and provide convenient decision 

support. The presented research extents our prior work which was published in [38]. 

The remainder of the article is structured as follows. After an initial discussion on the state of 

the art with respect to capacity management and prediction techniques, we summarize results of 

a field study that examines the average standardization degree of usage for enterprise standard 

software in Section 2. Having formed this basis of our work, the designed capacity management 

process for enterprise standard software is being presented in Section 3. According to the design 

science paradigm [39], [40], we evaluate the artefact in Section 4 through demonstration, where 

we particularly focus on innovative aspects such as the integration of machine learning elements. 

Using a real-world example, we utilize measurement data from 1,821 different instances of 

enterprise standard software to train a performance model. Subsequently, we demonstrate how to 

apply the model to predict service performance for forecasted workloads of a managed enterprise 

application using alternative designs. To complete the evaluation, we analyze potential future 

scenarios and derive decision support for our practical example. The findings are summarized in 

Section 5 where we also discuss the approach and clearly point out existing limitations. To 

address the latter, future research topics are identified. 

2 State of the Art 

Capacity management is a challenging and often complex task [9], [41], hence, many efforts 

have been made to structure required activities, to automate sub-processes and to support 

decisions. Especially, if the level of complexity requires to utilize artificial intelligence in order 

to effectively solve certain subtasks, different research fields are affected. In the following, we 

provide a short overview of the state of the art in the fields of capacity management as well as 

performance prediction techniques. Furthermore, we present practical insights about the average 

standardization degree of usage for EAs. 

2.1 Service and Component Capacity Management 

EAs need to permanently adjust to the individual, ever-changing business environment which 

they support, resulting in a continual requirement for tuning and sizing [1]. Therefore, 

application demands have to be aligned with the available hardware resources on a periodical 

basis. This challenge is at the heart of any capacity management effort. To ensure an adequate 

use of available capacity in practice, regular server consolidation projects are carried out by 
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internal or external service providers. The objective of corresponding activities is to determine a 

cost-effective input of hardware resources that enables a satisfying output of operations in the 

sense that given service level agreements are principally not violated. Besides the generally 

preferred use of energy-efficient hardware, this can be achieved by placing services on available 

servers such that idling capacity is avoided at most times. Hence, tasks and objectives of the 

ITIL sub-processes service capacity management and component capacity management are 

equally involved.  

For EAs, the workload often follows seasonal patterns on a daily and weekly basis [22], [23], 

[42] while changes appear only slowly in the long term [41]. Therefore, workload profiles, 

containing resource demands for different points in time, can be derived from historical data for 

each service. These profiles are used to make well-founded placement decisions where 

complementary workloads can be operated together in order to increase the overall average 

server utilization. Naturally, many approaches exist to address this optimization potential. The 

described challenge is closely related to the well-known bin packing problem, which is NP-hard. 

Hence, usually a single- or multi-dimensional workload consolidation problem is formulated and 

metaheuristics or genetic algorithms are utilized in order to identify feasible solutions to the 

problem. Herein, mainly CPU and, optionally, memory demands represent the considered 

resource dimensions [18]. However, as user-centric metrics such as service response times are 

not considered in the problem formulation, the quality of service for the newly calculated 

allocations remains questionable before its actual deployment. As argued in Section 1, 

predictions of to be expected performance would be desirable in order to foresee the effects of 

deploying a designed solution. In [18], some excellent work related to the descried optimization 

problem were studied and classified regarding different aspects of their application area. 

Following our argumentation, we further investigated the listed publications with respect to the 

evaluation of QoS aspects and summarize the results in Table 1. 

Table 1. Classification of related work 

Publication Workload Service Distinction Quality of Service 

Rolia2003 [21] dynamic no spare capacity 

Rolia2005 [22] dynamic yes spare capacity 

Bichler2006 [23] dynamic no not explicitly considered 

Cherkasova2006 [41] dynamic yes spare capacity 

Stillwell2010 [19] static no not explicitly considered 

Xu2010 [66] static no not explicitly considered 

Speitkamp2010 [14] dynamic no quantiles of historical service demands 

Feller2011 [43] dynamic no not explicitly considered 

Gao2013 [67] static no not explicitly considered 

 

At first, Table 1 distinguishes between static and dynamic workload. If the optimization 

problem implicates a time dimension for service capacity demands, we consider the approach to 

be dynamic, following the classification by [43]. In contrast, static approaches usually take the 

peak demand of a service and optimize allocations with respect to this single value, thus, 

practically wasting optimization potential. Furthermore, different service types may have 

different QoS requirements. While performance for productively operated ERP systems must not 

be degraded significantly [10], a temporary loss of performance can be tolerated in some cases, 

e.g., for development instances in favor of overall costs. Therefore, the assignment of service 

types allows for a more granular service treatment with regard to individual performance 

requirements. Finally, we studied the problem formulation for each approach and examined 

whether QoS aspects were explicitly considered. In the following we summarize the results for 

those publications that considered QoS aspects at least indirectly. 

Rolia et al. (2003) seek to a soft assurance for quality of service by introducing an additional 

portion of unused capacity of 50 percent or 20 percent per CPU or server [21]. In 2005, Rolia et 



6 

 

al. distinguish two service classes for production and non-production workloads. Furthermore, 

they define differing resource access probabilities for interactive and batch workloads to ensure 

that degraded resource access will not result in higher application response times. During 

evaluation, they use a spare CPU capacity of 50 percent of the targeted utilization for all 

interactive workloads in order to keep their response times low [22].  

The approach of Cherkasova et al. (2006) allows application owners to define utilization 

ranges of acceptable and degraded performance for a defined percentage of measurements in the 

historical workload trace. This way, the amount of spare capacity can be adjusted for specific 

services and time intervals [41]. 

In 2010, Stillwell et al. state that higher level metrics can be mapped to resource fractions 

allocated to a service by means of a linking metric. They create a metric, yield, which quantifies 

for each service how much of the resource demand is actually satisfied. In their allocation 

problem, they maximize the minimum yield over all services to consider performance and 

fairness. However, actual response time estimations were not quantified [19]. In the same year, 

Speitkamp et al. state that workloads which exceed the available capacity may lead to increased 

response times, but it remains unclear to which extent response times are affected [14]. 

To conclude, all studied approaches consider the QoS at best only indirectly by adding spare 

capacity for certain workload types or time intervals so that resource overloads are avoided. 

Nevertheless, none of the approaches quantifies user-level metrics such as the expected service 

response times for the identified solution candidates. Instead, performance-related metrics are 

abstracted by means of other metrics that are based on the resource utilization. While the 

provisioning of spare capacity certainly helps to catch unexpected load peaks, this strategy, 

depending on the added percentage, may dramatically reduce the optimization potential. 

Furthermore, it remains unclear how much spare capacity needs to be added in order to ensure 

a desired service level. This decision seems to be based on experience, the risk attitude of the 

application owner, and the consequential costs of service level violations. Hence, to quantify an 

adequate capacity amount, expert knowledge is required, which, on the one hand, may be costly 

or not available, and, on the other hand, implies the risk of a rather too much than too little-

attitude, especially if a majority of the considered services has strict performance requirements. 

Ultimately, additional capacity of the same resource type may not decrease response time to a 

desired service level. In fact, the performance of services also benefits from certain resource 

types or architectures that can be integrated by means of performance models [6]. 

To summarize, the prediction of performance appears to be decoupled from service placement 

problems in the literature while their strong interdependence to support business functions cost-

effectively is often disregarded. From a user perspective, pure landscape optimizations with the 

objective to maximize the average server utilization on the basis of historical workloads provide 

a proper starting point for placement decisions but still require to integrate means of verifying 

the expected QoS. We argue that approaches similar to the studied publications are suitable to be 

extended by subsequent performance prediction techniques, since related metrics are frequently 

collected as part of instrumented APM facilities [1], [13] and, therefore, may already be included 

in the workload traces of the underlying capacity management data basis. Hence, prediction 

models can be trained using workload traces and utilized to predict service response times on 

targeted servers before the actual deployment of any service relocation. We further note that 

approaches which use dynamic workload profiles are best suited to be integrated with prediction 

models because response times depend on metrics that usually vary for each measured point in 

time such as the number of active users, the number of database requests or the amount of 

transferred data between the layers of the EA [6]. If similar metrics are available and linked to 

services and timestamps, capacity management benefits from an integrated knowledge base that 

holds monitoring data for server consolidation efforts as well as the training and use of 

prediction models. 
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2.2 Prediction Models in Decision Making 

An integral part of the designed capacity management process is to evaluate alternatives in 

decision making. According to the intelligence-design-choice model by [44], three fundamental 

phases are required to support decisions: 

 Intelligence phase: understand the problem. 

 Design phase: generate and evaluate alternatives. 

 Choice phase: compare alternatives and decide. 

In simple environments, decisions can be taken automatically if the effects of alternatives are 

previously known. In all other cases, the effects of decision alternatives should be predicted with 

a suitable accuracy. In that regard, the use of prediction models allows to map decision variables 

to objective values. In the following, we distinguish between qualitative and quantitative 

prediction approaches. Qualitative approaches focus on the comparison of alternatives using 

language-like results, e.g., “better than” [45]. Often, subjective methods such as expert 

interviews are utilized to evaluate alternatives. Therefore, such approaches are easy to 

understand and to apply, but limited in credibility and transferability. On the other hand, 

quantitative approaches focus on the objective assessment of a single alternative. Here, two 

general modeling approaches exist [25], namely white-box (also referred to as model-based) 

techniques as well as black-box (also referred to as measurement-based) techniques [46]. The 

former describe the internal structure and behavior of alternatives on the basis of common 

models. According to a “divide and conquer strategy”, the problem is decomposed into 

subproblems until solutions to subproblems are easy to obtain. Such approaches rely on high 

modeling effort, but may produce comprehensible results since the model behavior can be 

analyzed. White-box models can be evaluated analytically and by simulation, prototyping, or 

testing [25]. Examples include process algebra, stochastic processes, Petri nets, queuing 

networks (QN), business process modeling notation (BPMN) or unified modeling language 

(UML) extensions [28]. 

In contrast, black-box approaches describe parametric models that can map the relation 

between input and output values on a high level. The alternatives are modeled as input-output 

tuples so that machine learning techniques can be used to train prediction models. While no 

domain experts need to be consulted for modeling, massive amounts of data may be required. 

Therefore, in the field of capacity management, implemented systems may be needed to produce 

measurement data for model training [28]. While the accuracy can be evaluated easily and, if 

appropriate, results are credible, trained models may not be comprehensible since general and 

transferable knowledge cannot be easily obtained from internal model characteristics [47]. 

Examples include regression models, artificial neural networks, support vector machines, and 

random forests. 

While many research activities were conducted using white-box approaches to model planned 

enterprise applications [11], only few attempts exist to use machine learning within capacity 

planning or management. In [48], a regression-based analytical model was trained to forecast the 

workload evolution. However, to predict actual service performance a QN was used. Recent 

machine learning approaches in this field mainly aim at integrating and analyzing datacenter logs 

across different layers of a data center to allow for predictive maintenance and root cause 

analyses in case of component failures [49]. Such concepts are referred to as IT Operations 

Analytics (ITOA), but do typically not consider the cross-organizational integration of 

measurement data collected from one particular layer in order to identify performance patterns. 

A first proof of concept for software-specific performance predictions using a black-box model 

that was trained across organizational borders was published by [6]. We build upon these results 

and construct an extended capacity management process for enterprise applications that takes 

account for the wide dissemination of standard software in this domain. Since the process builds 

on the assumption of functional components being comparable across different instances of the 
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same software, we performed a study on the average usage degree of standard business 

transactions for a major EA product, which we present in the following chapter. 

2.3 Standardization Degree of Enterprise Applications 

In the field of EAs, standard software is intensively utilized [32], [33]. However, every standard 

software needs to be adapted to fit the individual organizational and operational structure of its 

target environment. As part of this customization process, nonexistent but required functionality 

is provided by means of creating custom business transactions. Their execution logic is unique 

and typically unknown to external organizations. Therefore, corresponding performance metrics 

are hardly comparable across different instances of an EA [6]. Since the designed approach relies 

on standardized performance models, it may not be cost-effective for enterprise applications that 

utilize custom transactions to a great extent. Instead, economies of scale can only be leveraged 

for business transactions that are offered by the vendor of the EA to a large customer domain.  

In order to practically assess the effects of this limitation on a standardized capacity 

management approach, we performed a field study across 1,299 enterprise data centers with the 

objective to gather insights about the average standardization degree of productively operated 

EAs. For a period of averagely three weeks per data center, we observed a total of 176,782,062 

dialog transaction calls across 11,626 instances of the enterprise resource planning (ERP) 

standard software SAP ERP, regardless of the branch or country it was operated in. In average, 

18.03 % of these executions were related to custom transactions, leading to an average 

standardization degree of approximately 82 % across the analyzed data centers. Figure 1 shows 

the data distribution by means of a histogram. 

 

Figure 1. Usage degree of custom transactions for an enterprise standard software 

As can be seen in Figure 1, within the largest class of data centers (443 out of 1.299), less than 

10 % of executions were related to custom business transactions. This accounts to 34 % of the 

analyzed data centers. In general, 81.3 % of the data centers show a custom transaction 

percentage of less than 30 % which is relatively close to a 80/20 Pareto distribution. 

Furthermore, 96 % of the data centers spent less than 50 % of the dialog executions on custom 

transactions. This practical study supports the theoretical assumption that ERP implementation 

projects aim at using as much of the existing functionality as possible without having to 

customize [50]. Hence, the average usage profile of an EA strongly fosters the feasibility of a 

domain-specific but standardized capacity management approach that can be offered as a service 

in order to leverage economies of scale. 
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3 Capacity Management for Enterprise Standard Software 

IT professionals employ capacity management activities to ensure an acceptable QoS for systems 

under study [24], [29], [37], [51]. As discussed in the previous section, performance 

measurements can be useful for capacity management, although a massive amount of training 

data is required due to the black-box nature of this approach. Therefore, a running system or 

parts of it must be available [6]. In the domain of enterprise applications, organizations heavily 

utilize standard software along with its economies of scale, e.g., for ERP systems provided by 

software vendors to a large number of organizations. Especially large-scale information systems 

are rarely developed completely from scratch. Instead, most applications are constructed by 

adapting existing software to new organizational contexts [32]. In fact, over 60 % of the U.S. 

Fortune 1000 utilize third-party standard software provided by few major ERP vendors [33]. As 

a consequence, enterprise software to be introduced is most likely already running in different 

production environments and associated standard transactions are consistently being executed. 

These applications typically come with integrated software monitors that measure performance 

at runtime as part of APM activities. Since measurements can be extracted from a production 

system [13], performance-related data of systems comparable to the one that is being planned 

may be present in different organizations. As stated by [13], data collected by APM tools, e.g., 

about EA topologies, transaction traces, and performance measures, are a valuable input for 

performance model extraction approaches and may replace assumptions with knowledge. Since 

APM data includes transaction usage, resource utilization, system topology and response times, 

it can be used for performance prediction of standard transactions by utilizing machine learning 

techniques [6]. Such models, trained on a large volume of performance logs, recognize existing 

patterns, e.g., across hardware capacities, software releases and response times and, therefore, 

may be utilized to simulate effects of planned capacity changes such as the relocation of services 

as a result of server consolidation projects. Hence, we state that existing capacity management 

approaches do not leverage effects of the wide dissemination of enterprise standard software and 

waste collaboration potential. To address this gap, we modeled a capacity management process 

that allows leveraging those aspects. As stated in Section 1, we build upon the capacity planning 

process designed by [37], although it was initially defined only for web services. Since design 

requirements for enterprise applications differ from generic internet applications in many aspects 

[1], we further specified the process for EAs. As an example, business dynamics affect both the 

number of active users in an enterprise application and the number and extent of database 

requests [1]. Hence, the capacity needs to be aligned with short- mid- and long-term 

requirements determined by the business strategy. A major adaption we made to the process by 

[37] is to utilize machine learning techniques for performance model training. Therefore, well-

established concepts from the broad field of data science must be considered to ensure that 

models are systematically built and evaluated. Thus, we integrated tasks from the knowledge 

discovery in databases (KDD) process [52] into the capacity management process. In [6], a 

domain-specific performance knowledge base was proposed to support performance predictions 

for standard business transactions. The capacity management provider utilizes the concept of 

such a knowledge base in order to accomplish data storage, analytics and provisioning of results.  

3.1 Process Overview 

The capacity management process aims at identifying cost-effective design alternatives, e.g., in 

terms of hardware configurations, that allow for maximizing performance while minimizing 

costs. Since some of the main steps of the capacity management process were already introduced 

by [37], we focus on changes we made to adapt the process with regard to the specific 

characteristics of enterprise standard software. Figure 2 illustrates the process, which was 

modeled using BPMN 2.0. We chose this language since capacity management needs to be 

easily understood and integrated into application lifecycles [1] to be utilized by practitioners. 
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Figure 2. Capacity management process model for enterprise standard software 

The Capacity for EAs is typically planned and managed on a transactional basis [11]. 

Therefore, different prediction models can be built for individual business transaction types in 

order to simulate their performance. We distinguish between standard and custom transaction 

types. If customers require functionality beyond available components, the source code of the 

product must be adapted [50], resulting in custom transaction types that are known solely to the 

organization and are not used by any other party. Therefore, cross-organizational performance 

models cannot be built for these components and their capacity needs to be planned traditionally 

using individual analytical models or gathered data. However, a field study we performed prior 

to this work (cf. Section 2.3) reveals an average standardization degree of approximately 72 % 

across 11,626 instances of the enterprise standard software SAP ERP. Hence, the majority of 

transaction executions produces measurement data that is comparable across organizational 

borders [6] and, therefore, can be integrated to train standardized prediction models. To support 

both customized and standard transaction types to be considered, two organizational entities are 

involved, represented by the horizontal swim lanes (cf. Figure 2): 

 Capacity management consumer: IT organization that hosts the enterprise application 

whose capacity is intended to be planned or managed. 

 Capacity management provider: an entity that integrates measurement data from different 

application environments and provides prediction models for standard software components. 

This can be either the software vendor itself or a (internal or external) third party who 

provides capacity management as a service. 

The capacity management consumer carries out APM activities in order to collect the 

necessary data basis. This happens either continuously, e.g., by means of software intrusion, or 

on a periodical basis after a representable time frame was chosen. Since the APM data is at the 

heart of any data-driven capacity management approach, such traces are transferred to the 

capacity management provider, who seeks to keep performance models up to date. 

As indicated by the intermediate message start event, the actual capacity management process 

is triggered whenever a capacity change is required. Since the performance of an EA needs to be 

continuously evaluated [11], current capacity plans must undergo an evaluation process as 

performance changes are detected, e.g., through a continuous application performance 

monitoring or by end users via an incident management. In such cases, capacity change requests 

may follow. Besides continuous performance evaluations, the process is being triggered as part 

of major technical, strategic or organizational changes. Technical changes may be caused by 

migration, relocation, upgrade or any other change projects that are expected to affect the EA’s 

performance. This includes preceding server consolidation activities that produced new 

allocations of running services to available servers which need to be verified with respect to the 

expected quality of service (cf. Section 2.1). Organizational changes, on the other hand, include 
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openings of new divisions, mergers and acquisitions [1] while strategic changes may result in an 

expansion of the customer base or the release of new products. Such changes can heavily affect 

the expected workload. Finally, periodic audits or assessments may reveal either performance 

problems or optimization potential, of which both should entail capacity change requests. In the 

following section, we depict the main activities of the process. 

3.2 Activities of the Capacity Management Provider 

To enable capacity management for standard components, a capacity management provider 

utilizes the concept of a domain-specific performance knowledge base [6] to store, prepare and 

analyze a variety of measurement data. The objective of these activities is to provide the capacity 

management consumer with standardized performance models to be used for performance 

predictions of alternative scenarios, offered as a service. Therefore, capacity management 

consumers need to provide monitoring data that originates from APM activities. In the domain of 

enterprise applications, this is a common practice to allow consultancies for bottleneck 

identification, performance anomaly detection, performance tuning and related services, e.g., as 

used by [53]. Within the sub-process “Prepare Data” (cf. Figure 2), the capacity management 

provider selects, cleans, filters and aggregates the measurement data to fit into the data schema 

of the APM knowledge base. The data, in any manner, must contain information about the 

system topology, the resource utilization, and workload characteristics for each given time 

interval [6]. As part of this task, undesired outliers need to be excluded by means of quantiles 

and domain experts [54]. As different prediction models can be suitable depending on the 

transaction type and the data distribution, a suitable model type is to be selected by means of 

related studies and as part of the result verification loop. Appropriate model types for predicting 

business transaction performance may be regression trees, random forests, support vector 

machines, gradient boosting machines or models based on evolutionary learning [6]. The 

subsequent activity “Obtain Model Parameters for Standard Software Components” identifies 

and groups performance-related metrics by classes of similar components [37]. In the domain of 

EAs, such classes can be represented by specific standard business transaction types or standard 

task types like batch jobs or dialog jobs. To enable model evaluation, data need to be divided 

into a training and a test subset while the training subset should be at least twice as big as the test 

subset [55], [56]. After measurement data were preprocessed, they can be used to train the 

selected type of prediction model. Depending on the amount of training data, the model type and 

the degree of parallelism, this activity can take up to several hours. However, once a model is 

trained and provisioned, predictions can be made within seconds. Priory, verifying and 

evaluating the models is a crucial activity. If a model of insufficient prediction accuracy is being 

used to simulate alternative scenarios, business decisions are compromised, eventually leading to 

either serious performance degradations and business disruptions, or to costly investments for 

underutilized hardware resources. Therefore, the gathered test subset is used during the activity 

“Verify and Evaluate Models” to evaluate the model accuracy when being used with unknown 

data. Here, error metrics such as the mean absolute error (MAE) and the mean absolute percent 

error (MAPE) need to be investigated [57], [58], which should be based on absolute differences 

to prevent the compensation of positive and negative differences. Both measures are 

recommended, because the MAE quantifies the error and the MAPE generates a relation to 

observed values. In general, the boundaries of acceptable values need to be defined by the 

modeler [37]. As stated by [59], errors up to 25 % are, according to general conditions, within 

acceptable ranges. Likewise, [51] stated that accuracies of performance models from 10 to 30 % 

are acceptable in capacity planning. If the error was classified to be not acceptable, parts of the 

described KDD process need to be repeated. Means of tuning include changing the model 

parameters, changing the selected dataset, e.g., by applying additional filters, or selecting a 

different model type. These steps need to be iterated until the error is acceptable, also referred to 

as calibration procedure [37]. After that, trained prediction models can be provisioned to be 
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utilized by the capacity management consumer. Finally, provisioned models need to be updated 

on a regular basis by the provider to reflect additional and changed patterns that are caused by 

new software releases, new hardware components or any technological paradigm changes. 

3.3 Activities of the Capacity Management Consumer 

The capacity management consumer generally follows a sub-process that integrates well-known 

activities such as monitoring the application performance, understanding the environment and 

characterizing the workload. Detailed descriptions and guidelines related to these tasks can be 

found in [37]. In the following, we focus on the adoptions we made when it comes to the 

development and usage of performance models. For custom software components, prediction 

models need to be developed individually as outlined, e.g., in [11]. For standardized software 

components, such as basic business transaction types, the capacity management provider has 

provisioned prediction models to be used by any consumer as described in the previous section. 

In order to predict their service performance, these models and input data that reflect anticipated 

workload characteristics are needed. Sources of information can be observations of the system 

under study, if the capacity of an existing system is being managed, or benchmarking results if 

the capacity for a new system is being planned [13], [37]. To predict future service performance, 

input data must be aligned with the profiles of the forecasted workload, which represent the 

output of the activity “Forecast Workload Evolution”. Workload profiles define load-related 

parameters for a time interval such as the number of active users, the number of business 

transactions, the number of screen changes (also referred to as dialog steps), the number of 

database service units [60], and the utilization of the central processing unit (CPU) in terms of 

normalized metrics. Since EA workloads strongly depend on an ever-changing business 

environment [1], they must be forecasted on the basis of the business strategy (cf. Figure 1). The 

time horizon is a major aspect in the forecasting process, where seasonal, trend and random 

workloads for short-term, intermediate-term and long-term periods can be distinguished [37]. 

Aspects from the related concept of time series components by [61] may be used additionally in 

order to take adequate account to business plans and product lifecycles. Accordingly, mid-term 

developments with variable cycle length are specified as cyclic components whereas short-term 

seasonal components show regular changes resulting in a constant cycle length. Components 

may be integrated additively or multiplicatively [61]. Hence, the activity “Forecast Workload 

Evolution” produces workload profiles for each time horizon that are used in the subsequent 

activity for predicting service performance (cf. Figure 2). Here, the provisioned performance 

model for the standard software component of interest is utilized and the identified workload 

profiles serve as an input to specify model features that need to be adapted for the prediction. 

The use case and the granularity of available APM data determine the value that is to be 

predicted. Examples may be 

 the mean response time per time interval for each dialog step (DS) of a certain type of 

standard business transaction, 

 the mean response time per time interval for a task type, e.g., for any standard batch job or 

dialog job of a defined complexity, or 

 the throughput of an application instance per time interval. 

The response time was defined by [29] as the time a system spends on reacting to a human 

request. Predictions need to be repeated using the workload profiles and alternative designs in 

order to create a broad spectrum of future scenarios as a decision basis for the subsequent 

activity. If the prediction of service performance was requested as part of a server consolidation 

project, historical workload traces are to be spanned over targeted server configurations. Hence, 

the prediction models are used with values of the monitored metrics that are linked to new 

resource capacities, enabling to forecast performance values of a service for each considered 

point in time. If preceding optimization algorithms have been configured to identify a number of 
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alternative solution candidates, those serve as model input in order to produce alternative future 

scenarios.  

In any case, the predicted scenarios need to be analyzed by IT decision makers with respect to 

given service level agreements (SLA) and assigned IT budget. Within the activity “Analyze 

Future Scenarios”, the scenarios are used to limit the solution space of suitable design 

alternatives to those that meet the given SLAs at lowest costs. According to [37], the analyzed 

scenarios should consider the expected workload, the costs and the QoS. Consequently, all 

design alternatives with minimized costs and maximized performance need to be identified, 

leading to a multi-objective optimization problem. Such problems can be addressed by a Pareto 

approach as done, e.g., in [62] for optimizing performance and costs and in [63] for optimizing 

service availability and costs. On this basis, design decisions can be made, resulting in a capacity 

plan. 

4 Evaluation 

We demonstrate the feasibility of the designed process using a real-world example of an 

enterprise application that utilizes widespread standard software shipped by the software vendor 

SAP. In the context of ongoing server consolidation efforts, we assume a productively operated 

service to be chosen for a relocation. As multiple design alternatives have been identified, their 

expected quality is to be verified in order to choose the optimal solution with respect to costs and 

performance. Enterprise applications such as SAP systems typically support the execution of 

predefined standard business transactions as well as customized business transactions that were 

developed in-house. To support capacity management for both custom and standard components, 

the process branches into two paths as described in Section 3. For the purpose of demonstrating 

the feasibility of the process, we focus on the artifacts of each path that we designed within the 

scope of this article and assume the respective entity’s role. We use and mention obtained results 

from other activities if required for the sake of transparency. For custom components, analytical 

models can be used, which were extensively investigated in scientific literature and, therefore, 

are not demonstrated during evaluation. Instead, we firstly focus on the activities performed by 

the capacity management provider utilizing techniques from the field of machine learning as 

described in Section 3.2. Furthermore, we demonstrate the prediction of service performance for 

a standard business transaction and the subsequent analysis of alternative future scenarios (cf. 

Figure 2). Finally, using a Pareto approach, decisions are being supported. 

4.1 Data Preparation and Model Selection 

The used enterprise application under study is constantly being monitored by the capacity 

management consumer utilizing software monitors, which in our case are an integral component 

of the application. In the course of an ongoing server consolidation project, optimization 

algorithms as introduced in [18] came to a number of alternative designs for the running EAs. 

All design alternatives would cause reductions of the average server utilization. However, some 

services require a strict fulfillment of defined performance goals for selected business 

transactions. Since multiple solution candidates exist for the target design of each service, 

performance predictions support the final decision with respect to minimized response times and 

costs. Furthermore, due to planned business changes, the EA’s capacity needs to be evaluated for 

future scenarios of potentially higher workload.  

Therefore, most recent monitoring data of the last three weeks were sent to the capacity 

management provider and loaded into the APM knowledge base, which contains performance 

observations from various instantiations of this application type. As the capacity management 

provider, we then grouped these observations by business transaction type and hour. To enable 

model training for our given example, data tuples referring to more than 60,000 observations of 

hourly mean response times for a transaction type were utilized. The data layer, the analytics 
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layer and the provisioning layer of the APM knowledge base were set up as outlined in [6] using 

an in-memory database system. Therefore, each observation contains information about the 

workload extent during the observed hour, the system topology including the release status as 

well as the involved infrastructure components and their utilization levels. As part of the task 

“Prepare Data”, we excluded undesired outliers, e.g., caused by hanging processes, and filtered 

the data to include only productively used systems and to ensure minimum hardware utilization 

levels (the final data set comprises measurement data that originates from 1,821 instances of 

productively used EAs). Subsequently, we selected a model type. In [6], service performance of 

business transactions were predicted using six different prediction model types, including 

regression trees, random forests and support vector machines. When those were compared with 

respect to their mean errors across all cases, best prediction accuracy was achieved using a 

random forest. Based on these findings, we performed training runs using random forests that 

combine 1000 individual decision trees. 

4.2 Model Training and Evaluation 

As part of the activity “Obtain Model Parameters for Standard Software Components” we 

conducted expert interviews and, hereby, identified 30 parameters of our observations that may 

influence the quality of service performance, e.g., the number of concurrently active users and 

the data volume that is transferred between the application server and the database server of the 

EA. For dividing the data into a training and a test subset, we used a ratio of 80/20. As stated by 

[37], often differently parameterized training iterations are necessary to achieve a satisfying 

accuracy. During the runs, we used a feature importance function to assess the mean decrease of 

accuracy if a feature was permuted before prediction. This way, features having low influence 

can be identified and excluded from additional iterations. In our case, most important features 

include the number of database service units and the number of dialog steps performed during 

the studied hour. In our example, we used training data that is associated with executions of the 

standard business transaction for changing sales orders. On the basis of the total test set 

consisting of 12,774 predictions, error metrics have been computed for each prediction run. 

While the mean response time across all observations accounted to 594.14 milliseconds (ms), a 

mean absolute error of 124.6 ms was achieved, resulting in a mean absolute percentage error of 

22.4 %. The MAE is rather difficult to interpret for a single prediction model, but it could be 

utilized to compare different prediction models. The MAPE is easier to interpret since it allows 

for a percentage assessment and, consequently, is more frequently used in business environments 

[64]. In this context, the MAPE is significantly lower than the proposed accuracy of 25 % [59] 

and respectively 30 % [51], what is required for prediction models in capacity management. 

Thus, the trained model can be used in the context of performance prediction for different 

capacity or load scenarios. 

4.3 Service Performance Prediction 

The capacity management consumer wishes to predict the mean response time per dialog step for 

a business transaction type within an hour of runtime that reflects the workload profile identified 

in the previous activity (cf. Figure 2). In our early work, we introduced optimization algorithms 

which are capable of solving multidimensional workload consolidation problems [18]. 

According to Table 1, the optimization approach was implemented to support dynamic 

workloads and service distinction. In this article, however, we introduce an additional 

verification of the QoS for the identified design alternatives, since the sole consideration of CPU 

and memory demands can hardly be mapped to given SLAs. While the foregoing server 

consolidation is out of scope in this work, we assume that our optimization algorithms came to 

alternative placement decisions for a productively running service with exceptional significance 

for business continuity. Therefore, solution candidates need to be verified with regard to their 
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performance for future scenarios of different load levels. The demonstration of the corresponding 

workload forecast and derivation of workload profiles was outlined, e.g., in [37]. In our given 

case, the capacity management consumer expects a seasonal workload as observed in the 

historical data but with increasing trend. In particular, due to the integration of an additional 

business unit, the number of active users is expected to double while their task types remain 

nearly the same. The characterization of workload has revealed that the most used business 

transaction was to change sales orders, represented by the standard SAP transaction code VA02. 

Therefore, we predict the mean response time for this transaction type using the provisioned 

model and load factors between 1 and 2 with regard to the current workload extent. Since the 

workload characterization revealed several observations, especially beyond office hours, having 

less user activity, we added load factors between 0.25 and 1. The prediction results are indicated 

by the line that corresponds to design alternative 1 in Figure 3. 

 

 

Figure 3. Performance prediction results for alternative scenarios 

In our example, the given operational level agreements (OLA) between the business unit and 

the internal IT service provider do not allow for mean response times per dialog step longer than 

one second. As an example, the design alternative 1 would cause OLA violations for load factors 

of 1.25 or higher (cf. Figure 3). In our case, the design alternatives represent real server fractions 

with different hardware characteristics where their capacity is most relevant for performance. 

Hardware capacity can be measured in SAPS (SAP Application Performance Standard), where 

100 SAPS equal the capability to process 6,000 dialog steps per hour [20]. Database and 

application layers of EAs often span across multiple physical servers. The system under study 

consists of two servers for the database and the application instance. Therefore, in Figure 3, we 

distinguish between these two capacity values for each design alternative. However, other design 

characteristics such as the CPU type and the number of cores may additionally contribute to 

performance changes, sometimes resulting in anomalies where higher capacity does not 

guarantee lower response times (cf. Design Alternative 2 and 3). The predictions were repeated 

for each design. Due to their perceptible implications on the performance, the presented designs 

can be evaluated while the accuracy (cf. Section 4.2) must always be considered, especially if 

prediction results do not vary significantly. For each design, we assign costs amounting to the 

required total capacity in SAPS as also done by [9]. Therefore, multiple designs would enable to 

meet the given OLAs at different costs. In order to support investment decisions, it is the subject 

of the next process activity, “Analyze Future Scenarios”, to identify those design alternatives that 

deliver highest performance at lowest costs. 
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4.4 Analysis of Future Scenarios 

Considering a high number of possible design alternatives, e.g., due to possible combinations, a 

decision-maker should not be overwhelmed by alternatives that are not optimal. On the basis of 

validated performance models, different scenarios can be quantitatively analyzed and compared. 

Since the minimization of response time as well as costs are conflicting objectives, a Pareto 

approach is used to address the optimization problem.  

In this context, we are interested in the set of non-dominated solutions for all workload levels 

to be analyzed, i.e., all decision alternatives for which no better response time can be achieved 

without introducing additional costs. 

 

 

Figure 4. Set of Pareto-optimal designs 

In Figure 4, the set of illustrated Pareto fronts indicates the relation between costs and 

response time for each workload level. Each point column refers to a Pareto-optimal design 

alternative, i.e., design alternative 1 with capacity costs of 3,310 SAPS, design alternative 2 with 

6,620 SAPS and design alternative 6 with 145302 SAPS (cf. also Figure 3). In each column, the 

single points refer to the different mean response times predicted at different workload levels. On 

that basis, given OLAs or SLAs can be addressed cost-effectively. If, as indicated in the previous 

section, a mean response time of 1 second must not be exceeded, the design alternative 1 will 

likely violate this constraint if the mean workload increases by 25 %. In this case, the design 

alternative 2 would be necessary which will likely meet the constraint even for a doubled 

workload. If, however, the mean response time constraint is decreased to 800 ms and workload is 

doubled in comparison to the mean workload, design alternative 2 will not suffice. Thus, design 

6 comprising a high-end application and database server with costs amounting to 145,302 SAPS 

would be required. To conclude, the final design choice depends on given SLAs and the 

expected load scenario. This example demonstrates how the management can utilize the 

information generated in the capacity management process. If, however, the number of possible 

solution candidates makes an evaluation of all candidates infeasible, (meta-)heuristics, such as 

the NSGA-II presented by [65], can be applied to explore the search space more efficiently for 

optimal candidates. 
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5 Conclusion 

ERP products are seen as an opportunity both to share data and to standardize processes across 

the organization. On the other hand, capacity management for such widely spread systems is still 

performed highly individually with very few degrees of standardization and collaboration. 

Capacity management that is provided as a service can leverage economies of scale since 

performance models for standard software components are reused within the community of a 

particular EA. In this article, we designed and evaluated a process that benefits from machine 

learning to support capacity management challenges for consumers who utilize enterprise 

standard software. Since performance models are trained across measurement data from various 

running enterprise applications, capacity management benefits from a pure and reliable black-

box approach, applicable in the design or redesign phase of an EA and reducing both prediction 

and correction costs. Using more than 60,000 observations from productively running EAs, a 

prediction model of satisfying accuracy could be trained. As a potential capacity management 

consumer, we demonstrated the process activities to utilize trained models for performance 

predictions and to identify cost-effective design alternatives that consider workload forecasts 

resulting from the business strategy. In contrast to studied traditional capacity management 

approaches which optimize resource usage from a strong technical perspective, the designed 

process supports to quantify and verify the QoS for identified alternative designs. Hence, user-

level metrics that can be directly linked to SLAs such as the mean response time for standard 

business transactions are used to identify a set of pareto-optimal solutions with respect to costs 

and expected QoS. By transferring the challenges of performance predictions into a service 

concept, the capacity management consumer can focus on business challenges and decision 

making without having to deal with the various aspects of data science. Moreover, the designed 

process enables business models for capacity management on a pay-per-use basis, which may be 

of particular interest for hardware vendors who offer design alternatives. Finally, the research 

artefact may affect software selection processes for enterprise applications by contributing an 

additional decision-making factor to the main question of standard software versus individual 

software. The concept may influence decisions in favor of standard software to benefit from 

services that are built upon APM knowledge bases such as the capacity management as a service. 

We summarized our results and exposed the value of the designed research artifact. However, 

existing limitations of the approach need to be considered and addressed by future research 

activities. Firstly, the accuracy of the prediction models highly depends on the amount of 

training data and, therefore, on the number of observations that are stored in the APM knowledge 

base. Consequently, black-box approaches can be applied on standard transaction types that are 

used by a wide range of ERP customers. Therefore, model evaluation, using the described error 

metrics, is of major importance to assess the limits of the model’s application area with respect 

to the variety of training data. Although we could show that this is a rather unusual scenario, the 

approach may not be cost-effective for enterprise application usage profiles that show an 

intensive use of non-standard transaction types. For these customized components, white-box 

approaches need to be employed to develop individual performance models. Hence, performance 

predictions may result in conflicting decision support for standard and customized components 

that need to be aligned before alternative designs can be investigated. As part of future research, 

we embed this activity into an additional optimization problem. Furthermore, we plan to test and 

evaluate the effectiveness of additional prediction model types for different standard components 

including task types, e.g., batch jobs or dialog jobs of particular complexity levels. This approach 

may allow for the prediction of service performance on a higher level of granularity. Finally, we 

demonstrated performance predictions in order to verify service design alternatives that have 

been identified by optimization algorithms. This way, we were able to perform an end-to-end 

server consolidation process that optimizes the result with regard to both costs and service 

response times. Nevertheless, we are eager to further investigate the integration of our developed 

prediction models into the fitness function of a genetic algorithm and measure the effects on 
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solution quality and computing time. At present, together with our industry partner, we work on 

the automation of the described process. Therefore, a web interface is being developed to enable 

landscape optimizations and service predictions on demand. Hence, new business models in the 

domain of capacity management for enterprise applications are being enabled and may be subject 

to future research. 
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