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Abstract. This article uses data-driven techniques combined with
established theory in order to analyse gambling behavioural patterns of
91 thousand individuals on a real-world fixed-odds gambling dataset in
New Zealand. This research uniquely integrates a mixture of process
mining, data mining and confirmatory statistical techniques in order to
categorise different sub-groups of gamblers, with the explicit motivation of
identifying problem gambling behaviours and reporting on the challenges
and lessons learned from our case study.

We demonstrate how techniques from various disciplines can be
combined in order to gain insight into the behavioural patterns exhibited by
different types of gamblers, as well as provide assurances of the correctness
of our approach and findings. A highlight of this case study is both the
methodology which demonstrates how such a combination of techniques
provides a rich set of effective tools to undertake an exploratory and
open-ended data analysis project that is guided by the process cube concept,
as well as the findings themselves which indicate that the contribution that
problem gamblers make to the total volume, expenditure, and revenue is
higher than previous studies have maintained.
Keywords: Data mining, process mining, confirmatory statistics, problem
gambling.

1 Introduction

Pervasive use of digital technologies has left rich digital traces about not only the physical objects
of our world (e.g. purchase orders, sales figures) but also about our activities and our behaviours
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(e.g. emotions, sentiments, relationships, and interactions) [1]. The encoding of our activities and
behaviours as digital traces enables new evidence-based studies that would have been difficult just
a few decades ago, e.g. the prediction of students’ success through the use of learning management
systems data [2], and the discovery of working patterns of human resources in organisations [3].

Techniques from the domain of data mining [4], machine learning [5], and other statistical
analysis have been frequently and successfully applied to extract useful insights from data.
The increased availability of detailed event logs (due to the widespread use of process-aware
information systems) coupled with maturing process mining techniques [6] have recently enabled
wider applications of process mining in organisations around the world, such as in a large
Australian insurance organisation [7] and others [8], [9], [10], [11].

This article1 reports on the techniques applied, challenges and lessons learned from our case
study where a mixture of process mining, data mining, and confirmatory statistical techniques are
applied to analyse a data set containing information about all fixed-odds bets (FOBs) recorded
by a gambling service provider in New Zealand during a timeframe between 2013-2014. This
study attempts to identify and characterize various groups of gamblers (with a focus on problem
gamblers) directly from the data. The nature of this case study is exploratory: we do not “label” our
data with various classes of gamblers; rather, we attempt to learn how many groups of gamblers
can be discerned from the data.

To address these questions, we had to analyse the data both at an “aggregated level” (that is,
treating each gambler as an individual entity), as well as at an “event level” (that is, diving into
the details of the behaviours of each group of gamblers). The need to go into the details of the
behaviours of gamblers also posed a practical challenge that arose from computational resources
limitation, relative to the size and the complexity of the data to be analysed.

The exploratory nature of this study suggested the use of unsupervised learning techniques,
such as k-means clustering [13] as the starting point of analysis. While the use of clustering to
analyse problem gamblers is not new, we found that cluster analysis alone is not sufficient as it
tends to focus on aggregated, “static” characteristics of gamblers (such as gambling frequency and
socio-demographic status) and ignores the behavioural aspects of a gambler, such as how does a
gambler behave when he/she loses a bet. More importantly, it does not offer any insights into the
behaviour of gamblers seen in each cluster. We contend that this could be a contributing factor to
the experience found in other similar studies, e.g. [14] which found the use of k-means clustering
in their analysis to be rather ineffective.

In our case study, we demonstrate how both process mining analysis, with its proven ability
to extract detailed behavioural insights from fine-grained and chronologically-arranged data, as
evidenced by the insights obtained from previous process mining case studies [7], [8], [9], [15],
and confirmatory statistics, can be weaved together with clustering analysis to not only understand
the variety of behaviours exhibited by gamblers, but also to evaluate the results.

The integration of data mining techniques in process mining case studies is not new, e.g. [16],
[17]. It is mostly performed to provide an explanation of behaviours extracted from process
mining analysis. However, the integration is often lightweight: often performed towards the end
of the analysis stage and is mostly limited to simple classification/regression analysis [16], [17].
Jain [18], on reviewing k-means clustering [13] also reported that cluster analysis may have to be
supplemented with other analysis techniques as necessary. The inclusion of confirmatory statistical
analysis techniques in process mining case studies is, however, rarer, e.g. hypothesis testing can be
effectively used to assert, with high assurance, the significance of differences observed in various
intra- or inter-organisation processes. However, existing cross-organisational process mining case
studies (which could benefit most from such hypothesis testing), e.g. [10], [15], have not done so.

The case study highlights how process mining, clustering analysis, classification analysis, and
confirmatory statistics can contribute equally, as an expression of the process cube concept [19], to

1 This article is an extension of the work published in [12] by the same authors.
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extract sound insights about problem gamblers’ behaviours. With a wide range of tools at our
disposal, we were able to divide our data into multiple clusters and reframed our case study
question as a problem of extracting and understanding the similarities and differences in the
behaviours exhibited by gamblers within each, and across various, clusters. We could, thus, build
a picture starting from complex clusters and “funnel down” (drill-down) our attention to those few
clusters that exhibited interesting behaviours for more refined analysis2. By focusing our attention
on behaviours, we saw this as the first step towards eventually building a robust predictive model
for problem gamblers.

The main contribution of this article is on the reporting of challenges and lessons learned in
the application of these three classes of analysis techniques. Most importantly, this article details
how these three techniques can be strategically interwoven to extract sound insights about problem
gamblers’ behaviours. Furthermore, we also highlight practical challenges that arise when one
analyses a relatively large size of data with limited computational resources.

Section 2 describes the classes of analysis techniques employed and brief psychological theory
about problem gamblers that informs our analysis. Section 3 summarizes the approach taken in
this case study. Section 4 details the analyses performed at each stage of the case study (including
evaluation of analysis results), along with the challenges and lessons learned.

A discussion about the related work is provided in Section 5, followed by the conclusion.

2 Background

To understand the context that drives the way in which we conducted our data analysis, this
section provides a succinct introduction into psychological theory underpinning problem gamblers
and a brief description of process mining, clustering and classification analysis, and confirmatory
statistics.

Problem gamblers. From a psychological perspective, the basic mechanics of how addictive
behaviours, such as problem gambling, are learned are well understood: they involve a complex
set of interactions between actions and rewards. Reinforcement learning (or operant conditioning)
works on the principle that a behaviour will increase when it leads to a pleasurable outcome.
Depending on the salience (or importance) of the reward to an individual, they will seek to
maximise the pleasure experienced by increasing the frequency of the behaviour. At the same
time, studies have shown that brains tend to develop a tolerance level as the frequency of such
pleasurable experience increases, leading to the need to increase the intensity of the pleasure [22].

This tolerance reveals a very powerful feedback loop between stimuli, responses, and rewards,
which can be characterised as a process, hence the focus in this article is on using process mining
as a tool to understand problem gambling, since the sequence of events is critical for learning to
occur. For instance, if a stimulus is presented after (or at the same time of) a behaviour occurring,
then no association is learned between the two, and without the reinforcement of that behaviour
by the presentation of a reward, learning will fail. This also reveals the potential of the process
analytics approach, since it may be possible to suggest changes or interventions in the gaming
process which might reduce the harm from problem gambling, perhaps by providing additional
parallel feedback about losses accumulated and the likelihood of success.

Process mining. Process mining [6] is a specialized class of techniques used to analyse data
related to the processes of organisations. A process consists of multiple activities, executed in
a particular order, to achieve a particular goal (e.g. an insurance claim process). A process is

2 As elaborated later in this article, the “drill-down” approach, manifested through a form of recursive
clustering, is an appropriate approach as recent studies shows that problem gamblers only affect 0.7% of
the population in New Zealand [20], [21].
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typically expressed as a process model using graphical notations, e.g. BPMN.3 The term case or
process instance represents one execution of a particular process (e.g. the insurance claim process
for Customer A). Data used in process mining is known as an event log which consists of events.
At minimum, an event is described by an activity (i.e. the task related to the event, such as placing a
bet), a timestamp (i.e. the moment the event occurred), and a case identifier (i.e. the case to which
the event belongs).

Typical process mining analysis includes process discovery (where process models are extracted
from event logs), conformance checking (where the actual behaviour captured in the log is
compared against the expected behaviour of the process), process performance analysis (e.g.
average case duration), and resource analysis (e.g. collaboration among resources, resources
working pattern). A process mining case study typically results in detailed evidence-based insights
about the behaviours and characteristics of the process being studied.

Cluster and classification analysis. Clustering and classification algorithms have been extensively
studied and are common in data mining and machine learning text books [4], [5].

Cluster analysis attempts to find groups whose individual members share sufficient commonality
within a given cluster, and distinctiveness from samples in remaining clusters. One of the simplest
and most widely-used clustering algorithms is k-means clustering [13] due to its ease of use and
empirical success. As suggested by Jain [18], for multidimensional data, best practices recommend
the use of other complementing analytical techniques to assert the distinct characteristics of each
cluster. In this article we use process mining analysis to do so: we extract distinct behavioural
patterns from each cluster and use them to support the uniqueness of each cluster (see Section 4.5).
Cluster analysis is primarily exploratory and is categorised as unsupervised machine learning since
objects’ labels or class memberships are not known a priori.

Unlike clustering, classification analysis which is a form of supervised machine learning, relies
on each data point having a unique attribute called “Label” which assigns the data item to a
particular class to which it belongs (e.g. a gold customer vs. a platinum customer). Other variables
in each data item (e.g. income, postcode, profession), also known as predictor variables, are used
by the classification algorithm as sources of information to learn the strength of the correlation
between one or more of those predictor variables and the label. Classification analysis aims to
explain the response variable using predictor variables.

Confirmatory statistics. Confirmatory statistics can measure the strength and importance of the
patterns and results found by the exploratory analysis. The data used in this article had highly
non-parametric, long tailed distributions. Kruskal-Wallis [23] is one of the most commonly used
non-parametric tests; as such it makes no assumptions about the distribution of the data and was,
thus, deemed suitable. To determine significant differences between two groups, pair-wise Dunn’s
test [24] is frequently applied in literature in post hoc analysis since it retains the rankings used
by the Kruskal-Wallis test. The larger the number of pair-wise Dunn’s tests performed (especially
true for a large number of groups), the greater the likelihood of finding false positive statistical
differences. To account for this increased probability, the Bonferoni correction was applied. In this
article, we used the Kruskal-Wallis test [23] with Dunn’s test [24] and the Bonferoni correction to
find statistical differences across various clusters of gamblers.

3 www.bpmn.org
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3 Approach

While we applied a range of techniques from multiple disciplines, our case study employed the
PM2 approach [25] because: (1) the starting point of our analysis was an event log (the log used in
our study consisted of betting events per account holder), of which process mining is designed for,
and (2) the PM2 methodology is rather detailed in its guidance on each stage, and flexible enough
to allow the inclusion of other types of classical data mining techniques (e.g. clustering).

The PM2 methodology consists of 6 stages: planning (identification of process to analyse and
research questions, project team formation), data extraction (determining scope of data to be
extracted, data interpretation), data processing (refinement of extracted data to build the optimal
“views” for analysis), mining and analysis (application of various analysis techniques to answer
research questions), evaluation (diagnosis, verification, and validation of results), and process
improvement (application of results to improve processes).

We regarded process cube as a fine-grained concept that guided us in the way in which we
pre-processed and analysed our data, while the PM2 provided the overall structure for our case
study.

4 Case Study

This case study entailed the first five stages of PM2, with a focus on the data processing, data
mining, clustering and analysis, and evaluation stages. Key activities that were undertaken at each
stage are explained, followed by the challenges encountered and lessons learned.

4.1 Planning

The stakeholder (an economist) was consulted about the open questions from the data set. In our
case study, our stakeholder was interested in understanding the strategy and behaviours of various
types of gamblers. The questions that are of interest include: (RQ1) “How many groups of gamblers
can be discerned from the data set?” and (RQ2) “Which users were most likely problem gamblers
from the data?”. The team formed for this case study consisted of experts in the domain of data
mining, process mining, statistics, and the stakeholder.

4.2 Data Extraction

The data set was extracted from a New Zealand gambling service provider4. It contained
information about all FOBs placed in New Zealand over a 9-month period (from August 2013 to
May 2014) which were associated with anonymised customer accounts. SOGS-R and SOGS-3M
are some of the most cited screening instruments used in psychology for diagnosing pathological
and problem gambling [26]. These survey-based instruments examine gambling related responses
from gamblers over the previous six and three months of their gambling patterns respectively [27],
[28], which is in line with the timeframe covered by our data. Furthermore, practical limitation
of our computing resources (three 8-16GB/i5 Core workstations and one 32GB/i5 Core virtual
machine) also limited the amount of data that we could analyse.

The following figures depict descriptive statistics about the dataset. Figure 1 shows the
distribution of the monetary volume of betting across the nine months that the dataset covers
which includes some of the most active betting months in New Zealand (which typically occur
during southern hemisphere summer).

The data set extracted was in an event log format where each line of data represents a betting
event. The majority of the bets in our data set were placed through the Internet channel, followed
by mobile betting (see Figure 2). Consultation with the stakeholder was needed to interpret the data

4 New Zealand Racing Board
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and to decide the scope of data used for analysis. Important attributes from the data set included:
“Account ID” (the unique identifier for each gambler), “Timestamp” (the time when the bet was
lodged to the system), “Bet Outcome” (whether the gambler won or lost the bet), and “Bet Value”
(the bet amount). Other attributes from the dataset were not used in this study.

Figure 1. Total number of bets per month

Figure 2. Distribution of bets by betting channel

Lastly, Figure 3 shows the distribution of the frequency of bets placed per product5. Various
forms of racing generated the bulk of the betting activity, followed by regionally popular sports
such as Rugby, Football and Cricket.

4.3 Data Processing

The dataset consisted of 11,311,892 betting events executed by 91,405 account-holders. The
number of betting events per case (or per gambler) varies quite widely, from only a few gambling
events to millions of gambling events (for the latter, we suspect them to be professional gamblers).
The data was pre-processed: (1) because our experiences show existing implementations of many
process mining techniques do not scale well; many process mining case studies used event logs
that are significantly smaller (between a few thousand events to just over 1 million events, e.g. [7],
[29]); and (2) because the unsupervised and supervised learning algorithms used in our case study
were run using aggregated “case log” granularity, not using detailed event-level granularity.

5 For readability, the figure excludes less popular products with under 0.5% frequency such as: Darts,
Boxing, Motorsport, Yachting, Hockey, Snooker, Athletics, Speedway, FOB Racing, Bowls, Surfing,
Motorcycling, Cycling, Shearing, Softball, Triathlon.
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Applying the concept of the process cube [19] would call for slicing and dicing event logs from
multiple dimensions. However, the exploratory nature of this case study meant that there were no
clear filtering dimensions that could be used to slice the data. Therefore, an unsupervised learning
technique was a suitable tool as it allowed us to find the “natural separation” of gamblers in the
data set. We used the k-means algorithm [13] to cluster three problem gambling features from the
data: bet frequency (absolute frequency), the ratio (in dollar amount) of winnings over amount
lost (referred to as win/loss dollar ratio, and ratio of the number (count) of bets placed that result
in winning as compared to bets that were lost (referred to as win/loss ratio). Seven clusters were
chosen due to: the distribution of the data, the doubling plus one of the number of groups the data
owner used; and the insights from the Within Sum of Squares (WSS) analysis which showed that
the cohesiveness of the clusters converged to an optimal in the range of k=7 and k=8 (k referring
to the number of clusters).

Figure 3. Distribution of bets by betting product for the top 15 products

Next, an event log was derived for each cluster. We used a gambler’s account identifier as the case
ID in the event log to trace the behaviour of each gambler. The timestamp values in the original
data were interpreted as the times respective bets were made. For the activity field, the data was
preprocessed to approximate a gambler’s reward feedback loop mechanism (see Section 2) in terms
of their subsequent action upon win or loss of a previous bet – referred to as a gambler’s clawback
behaviour.

An activity name was created as the concatenation of (1) the outcome of the previous bet (win
or loss) and (2) the amount of money placed in the next immediate bet as a proportion of the
amount of money placed in the previous bet: less than or equal to the previous bet amount (<= 1),
up to double the previous amount (1to2), or more than double (>2). For instance, the activity
name loss <= 1 would mean that a user having lost the previous bet, had subsequently placed
another bet where the bet amount was less than or equal to the previous bet. Table 1 shows a
sample of the event log obtained for each cluster. The name of the activity for the very first bet is
Initial Bet.

Outcome. We obtained 7 smaller event logs for each cluster that are of manageable size for deeper
analysis.

Challenges. The large dataset posed analysis challenges due to the lack of scalability of
the software tools used. Attempts to generate an XES file (i.e. the log format expected by
most process mining tools) were a problem: we were limited by the number of events that
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Table 1. Event log derived from the raw gambling data set

Case ID Timestamp Activity Bet Outcome Bet Value
12345 03/03/2012 08:56:12 Initial Bet Win 25.00

12345 03/04/2012 07:34:22 Win 1to2 Loss 28.00

6789 03/03/2012 22:30:01 Initial Bet Loss 2.00

6789 03/05/2012 23:11:34 Loss >2 Loss 8.00

... .. ... ... ...

can be imported in Disco (www.fluxicon.com/disco) tool. We could have used the ProM Tool
(www.processmining.org) to convert the original CSV-formatted log into XES; however, it would
not have been practical: the generated XES file (in XML format) would have been substantially
larger than the original CSV data. It would not have scaled well as is proven later in our analysis.

Slicing the original data into smaller sets was crucial. Trace clustering algorithms, e.g. [30],
could not have been applied as they would have required the entire event log to be analysed
(not feasible with our resources). This was tackled by using k-means clustering [13] based on
aggregated features at a coarser case-level granularity. This required deciding the optimal number
of clusters (k) to be used. We combined the advice from the stakeholder with the WSS analysis
which showed that the cohesiveness of the clusters converged optimally in the range of k=7 and
k=8. We, therefore, decided to use 7 clusters.

blue  clusterblack cluster

Gambling frequency

Figure 4. Two-dimensional projections of 3D visualisation of the 7 clusters (colour-coded) based on
gambling frequency, win/loss ratio, and win/loss dollar ratio

Another challenge that we faced was related to the long-tailed distribution and large gaps
in data points (sparse data) – a phenomenon that is commonly seen in process mining case
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studies, e.g. [7], [9]. Such a data set renders k-means clustering less effective and makes
data visualisation challenging (as high-ranged values would dominate the graphs). This was,
unfortunately, the state of our data. The aggregated attributes used for clustering (i.e. bet frequency,
win/loss ratio, and win/loss dollar ratio) were sparse. For instance, the absolute frequency of bet
ranges from just one bet per gambler, to over one millions bets.

We overcame this issue by applying two data normalisation procedures: logarithmic
normalisation of the values (which unfortunately did not manage to “squeeze” the data range to an
acceptable scale) and min-max normalisation to force a particular range of values to be respected.
Through these normalisation procedures, we managed to ensure that the range of values used in
our k-means clustering were within an acceptable range, and that the results of the clustering
could be properly visualized and interpreted. Figure 4 visualizes the population of each cluster
(colour-coded) against the three attributes used.

Lessons learned. The effectiveness of combining unsupervised k-means clustering and aggregated
case-level attributes to slice a substantially large data set was highlighted in this analysis. We
“deflated” the data size from over 11 million events to just over 94 thousand lines of data (each line
represented one gambler). By “deflating”, we mean that instead of slicing the data at event-level,
we used case-level perspective (by aggregating event-level attributes to case-level attributes).
Therefore, instead of having to deal with 11 million events, we considered only 94 thousand lines of
data (each representing a case with its aggregated attributes) and cluster them into 7 clusters using
k-means clustering. Once we knew the assignment of each gambler to a particular cluster, we could
build a smaller event log for each cluster by retrieving the relevant events for each gambler from
the original data set using the case ID as the link.

We also developed a strategy to find a meaningful number of clusters. By doubling the number
of initially-suspected clusters and cross-referencing it with WSS analysis, an estimate of an optimal
number of clusters could be made which was conservative enough to reduce the error probability
of not finding enough clusters and fine-grained enough to account for the complexity of the data.
This insight was supported by the subsequent evaluation stage (Section 4.5).

4.4 Mining and Analysis

To answer RQ1 and RQ2, we had to determine if the key markers for problem gamblers differed
across clusters. To this end, we applied process mining techniques to extract behavioural features
which allowed further analysis.

Analysis of the initial 7 clusters. The clawback (chasing losses) behaviour is refered to as a key
problem gambling psychological feature (see Section 2). We studied the clawback behaviours in
each cluster by generating process models for each cluster using the Disco tool. Then, through
visual comparisons (similar to Suriadi et al. [10] and Partington et al. [15]), we extracted 9 distinct
flow patterns that are dominant in some clusters but not in others. These patterns capture a sequence
of activities which may include one loop. For instance, consider the pattern loss <=1 followed
by loss <=1. In the log, if we see three consecutive occurrence of the activity loss <=1, we
counted that pattern as having occurred twice. Interestingly, 6 out of the 9 patterns represented
lost-related clawback behaviours, e.g. continuous iterations of the activity loss <=1 and the
loop between loss <=1 and win <=1 activities (Figure 5).

Visual analysis only informed whether certain patterns were more “prominent” in one cluster
over another. It did not imply any statistical significance. We, therefore, extracted the distribution
(in terms of frequency) of the incidence of the 9 patterns from all clusters. For instance, the
distribution of the frequency of Pattern 3 and Pattern 4 is shown in Figure 6. Based on the frequency
distribution of these patterns, we then performed Kruskal-Wallis tests in conjunction with Dunn’s
tests. The results of these tests confirmed that the distribution of these patterns across the seven
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clusters were indeed different at the p-value of 0.05. In addition, from box-and-whisker plots, we
also observed that the distribution of these 9 patterns were quite distinct in the blue and black
clusters (see Figure 6, for instance).

Pattern 3
Pattern 4

Pattern 5

Figure 5. A visualisation of clawback behaviours identified from the process models of each cluster. Pattern
3 depicts a gambler who repeatedly lost bets and kept on betting to recoup the loss; Pattern 4 captures a
continuous feedback loop winning and then losing a bet; Pattern 5 captures a clawback behaviour where the
bet was double the amount of previous bet following a lost bet. The frequency of each event is blurred due
to data confidentiality reasons.

Figure 6. A comparison of the distribution of Pattern 3 and Pattern 4. Similar distribution for other patterns
is also observed (not shown above).

The time elapsed between bets (bet interval) was another marker used to approximate betting
intensity (another marker of problem gambling). We applied the event interval analysis plug-in [3]
used with the ProM Tool to extract the bet interval for each bet placed by every gambler in each
cluster. We aggregated the bet interval information per gambler, using the median value, to obtain
the distribution of the bet interval values per cluster (as shown in Figure 7).

Next, Kruskal-Wallis and Dunn’s tests were applied, the results of which asserted that the
distributions of the bet intervals across the 7 clusters were indeed different at p-value 0.05. This was
supported by the box-and-whisker graph (Figure 6 – right) which shows that the blue and black
clusters had significantly lower bet interval values compared to other clusters. The exceptions
being cyan and brown clusters. However, from Figure 4, we discounted these two clusters since
their actual bet numbers were very low (e.g. the gamblers in the both clusters had mostly only bet
once).

Interestingly, the pair-wise Dunn’s tests for several behavioural patterns between the blue and
black clusters resulted in a p-value higher than 0.05, which indicated insignificant behavioural
differences across these two clusters (in the context of the overall 7 clusters). Thus, we decided to
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re-cluster (“roll-up”) just the instances belonging to the blue and black clusters for second-level
clustering analysis. Our expectation was that the second-level clustering would further refine the
clusters in from these two original groups such that additional behavioural differences could be
extracted.

Figure 7. The distribution of the bet interval across the 7 clusters

Outcome. Through clawback-behaviour pattern and bet interval analysis, as well as Kruskal-Wallis
and Dunn’s statistical tests, we were able to group and rank the severity of gambling patters across
the 7 clusters. We addressed RQ1 by having found mainly 4 clusters that are statistically different.
Our ranking exercise also suggested that the blue and black clusters were more likely to contain
problem gamblers as these groups exhibit significantly more intense bet intervals and gambling
patterns, suggestive of gambling addiction. Results from this stage warranted a “drilling-down”
analysis into these two clusters and by further re-clustering.

Challenges. A key challenge faced was process comparison. Existing literature on comparative
analysis of processes [7], [10], [11], [15] seemed to go no further than visual analysis of
process models derived from process mining tools (e.g. Disco tool), or through some forms
of multi-perspective visualisation techniques (e.g. [11]). However, such approaches could be
theoretically unsound. For instance, the frequency perspective visualisation in the Disco tool
showed the total number of times a particular path was traversed by all of the process instances
of a cluster. A process instance within a cluster that had an abnormally high number of such
path traversals will skew the overall picture. This issue was solved by extracting the distribution
of potentially-distinct flow patterns identified through visual analysis, and by having applied
confirmatory statistics testing of the significance of pattern differences across multiple process
groups.

From a practical perspective, we faced computational limitation (as severe as a machine
re-boot due to overloading) during use of the ProM Tool plug-ins: event interval analysis [3]
and BPMN Miner [31]. This was handled by further division of the event log which belonged
to the largest cluster into three sub-logs. However, division of large XML-formatted event log was
also a challenge as it has more than 105 million XML elements/lines. We used basic, powerful,
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Linux-based text processing utility, such as less, vim, and sed to be able to cope with large
XML files.

Lessons learned. The extraction by clustering was key to our work, as was the application of
confirmatory statistical testing to the distributions of potentially-distinct process flows identified
through visual comparison of process models. We were reasonably confident that the differences
observed across multiple processes within, or across various, clusters were significant, and not
by part of the same distribution. The statistical significance amongst clusters allowed use of
other forms of graphical analysis tools, such as box-and-whisker, to identify how the clusters
differ. The non-parametric assumptions of Kruskal-Wallis tests, paired with Dunn’s tests, made
them flexible and useful. Our experiences with process mining analysis suggest that we rarely
see data that is normally distributed in practice. Therefore, such a combination of techniques
could be recommended to be applied to many process comparison exercises frequently seen in
cross-organisational process mining [10], [11], [15].

The Inductive Miner [32] implementation in the ProM Tool was shown to be scalable to even
the largest event log in our clusters. However, the process model was less so: it produced models
that exhibited “flower model” characteristics. We also used the BPMN Miner [31]; however, our
computational resources were too limited for it to work properly. So far, the Disco tool was still the
most scalable tool in terms of extracting process models even on an event log of over 4GB in size.
The event interval analysis plug-in [3] was unable to handle the event log of the largest cluster;
however, it worked though slowly (overnight for the largest cluster) after the log was divided.

Analysis of second-level clusters. The population within the blue and black clusters still exhibited
a wide range of behaviours. It was unlikely that the majority of the population in those clusters were
problem gamblers: there were 21,642 gamblers (23.67% of the total) in these two clusters. The data
and diversity of these two clusters supported further clustering of the original population in the blue
and black clusters into another 7 clusters. Each of the second-level cluster is also identified by a
colour.6

This second level clustering was performed using k-means clustering using similar features
as the initial clustering. For these second-level clusters, our focus was to establish statistical
differences in terms of gambling clawback behaviour. To do so, we used the frequency distribution
of those activities signifying loss-related clawback behaviours. loss <=1 signified the gambling
pattern of following a losing bet with another that is of equal or smaller value, while loss 1to2
encoded following a loss with another bet that was up to twice the size of the previous and
loss >=2 indicated chasing a loss by more than doubling the size of the immediately preceding
losing bet. The Kruskal-Wallis and Dunn’s tests show an interesting insights: while the second level
clusters do show mixed results for the statistical differences of the distribution for the loss <=1
and loss >=2 activities, there are no statistical similarities for the loss 1to2 activity across
all 7 clusters.

We also extracted the distribution of the Pattern 3 and Pattern 4 behaviours and the bet interval
behaviour across these second-level clusters. As shown in Figure 8 and Figure 9, we can see that
the pink 2 and brown 2 clusters contained disproportionately higher number of Pattern 3 and
Pattern 4 compared to the other clusters. Furthermore, the median bet interval values for these two
clusters were also noticeably lower than other clusters.

6 For clarity, these 7 clusters obtained in the second-level clustering can be seen as more refined clustering
of the original two clusters (i.e. the blue and black clusters from the intial clusters detailed in Section 4.4).
In combination, we now have 12 clusters in total: 5 from the initial clusters, and 7 from the second-level
clusters.
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Outcome. We used the Kruskal-Wallis and Dunn’s tests results with our second-level clustering 3D
visualisation (Figure 10), and cross-referenced with box-and-whisker plots (Figure 8) to provide a
more refined severity ranking of problem gamblers within the second-level clusters. These results
indicated that the pink 2 and brown 2 clusters were likely to be the location where the problem
gamblers were situated. We, thus, addressed RQ2: we managed to narrow down the most likely
problem gamblers to two clusters (from the second-level clusters) with a combined population size
of 6,389 accounts.

red_2 pink_2 green_2 cyan_2 brown_2 black_2 blue_2 red_2 pink_2 green_2 cyan_2 brown_2 black_2 blue_2

Figure 8. Distribution of Pattern 3 and Pattern 4 in the second-level cluster

red_2 pink_2 green_2 cyan_2 brown_2 black_2 blue_2

Figure 9. Distribution of bet interval across second-level clusters

Challenges and Lessons Learned. The main challenge was to narrow down the problem gambling
patterns from total gambling population. We overcame this by using a recursive clustering approach
as described above.

More importantly, we found that recursive clustering approaches with confirmatory statistics
were a suitable expression of the process cube concept [19]. Recursive clustering based on
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aggregated case-level attributes allowed us to “slice and dice” event logs in an unsupervised
manner, while confirmatory statistics informed us as to which groups of processes that should
be “rolled-up” (that is, those two groups whose p-value from the Dunn test indicates statistical
similarities) and which to ‘drill down’ into. We found a unique manifestation of the process
cube concept which hitherto has been dominated by slicing processes based on control-flow
perspectives, e.g. Ekanayake et al. [33], or simple log filtering based on some known case-level
attributes, e.g. Suriadi et al. [7].

4.5 Evaluation

This case study relied heavily on clustering to identify various classes of gamblers and to identify
problem gambling (see Section 4.3). For these clusters to have been meaningful, we had to assert
that (1) the population within each cluster shared some unique characteristics and/or behaviours
that were distinct from other clusters, (2) the existence of those clusters were within reasonable
expectation of the stakeholders and could be supported by other studies in the domain of problem
gambling.

For the former, we applied classification analysis on the combined first- and second-level clusters
(12 clusters in total: 5 from the initial clusters and 7 clusters from the second-level clusters). We
used features that had not previously been used to generate the k-means clustering. These features
included the median bet interval values (Section 4.4), the frequency of the 9 gambling patterns
(Section 4.4), the frequency of clawback behaviour activities (Section 4.4), the total sum of money
won, and the number of times a gambler won a bet. These features when used with the random
forest algorithm (with 300 trees and 5-fold cross validation) generated a classification accuracy of
84.9% with a standard deviation of +/- 0.8%. These classification results, having used independent
features from the clustering process, provide support that the clusters that were produced were
relevant and meaningful.

Figure 10. Visualisation of the Level 2 Clustering Result
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We also presented our results to the stakeholder who found the results to be reasonable. Some
insights will require further study, e.g. the dominance of Pattern 3 and Pattern 4 (which suggested
that gamblers had bet equal or less than their previous amount after they had won or lost the
previous bet). This contradicted currently-understood risk-taking behaviour of problem gamblers
where the expectation was for them to increase the amount of bet money following a loss. While
further analysis may be required, there was an explanation for this: the dominance of Pattern 3
and Pattern 4 was evident when we took all 12 clusters into account (which could mean that
such behaviour is discriminatory for deciding if a gambler is a problem gambler or not). In the
second level clustering, however, it was the frequency of high-risk clawback behaviour, i.e. the
loss 1to2 activity that was statistically different across all second-level clusters (thus, in line
with the expected behaviour).

To further evaluate the results, we also compared our results with the results gathered from other
studies about problem gambling, including the Problem Gambling Foundation of New Zealand7,
the Ministry of Health New Zealand [21], and the study by Orford et al. [34].

In particular, the validity of the clusters obtained from our study can be further supported
by the distribution of gamblers who placed bets of $500 or more as this is one of the key
markers of a problem gambler according to Problem Gambling Foundation of New Zealand.
As shown in Figure 11, two second level clusters (identified as pink 2 and cyan 2) contained
disproportionately higher number of gamblers who placed bets over $500 dollars. This observation
confirmed our earlier observation that the pink 2 cluster likely contained problem gamblers;
however, the fact that the brown 2 cluster contained very low number of gamblers who placed
bets over $500 dollars weakened the support for our earlier observation that this cluster may also
contain problem gamblers. This phenomenon will require further investigation.

Figure 11. Distribution of gamblers who placed bets greater than $500

Another typical result obtained from other studies include the (dis)proportionate contribution,
in terms of revenue and volume of bets (that is, the total number of bets placed), by problem
gamblers. A study in New Zealand showed a consistent phenomenon (that has lasted for more than
a decade) whereby the majority of gambling revenue comes from a relatively few people [21]. A
similar study in Britain also showed a similar phenomenon whereby, in certain types of gambling,
around 30% of both gambling volume and revenues came from problem gamblers [34].

These are interesting observations that correspond to our results, though to a varying degree. If
we were being very conservative and assume that 1% of accounts are potentially problem gamblers,
our data analysis shows that the top 1% of the accounts by frequency account for 25% of the total
betting volume. Likewise, the top 20% of the accounts by frequency account for 88% of the total

7 www.pgf.nz
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betting volume. This phenomenon is supported by the cumulative distribution function shown in
Figure 12 which shows that the top 1% of gamblers placed disproportionately higher number of
bets compared to the other 99% of gamblers.

Figure 12. Cumulative distribution function graph showing total number of bets placed per gambler

Figure 13. Cumulative distribution function graph showing total amount of money in dollars placed per
gambler

When we viewed the gambling volume through total expenditure (i.e. total dollar amount from
all bets, Figure 13), more interestingly, we saw that the top 1% (914) of gamblers (by betting
expenditure) contributed to about 60% of the total betting expenditure. Meanwhile, the top 20%
(18281) of gamblers (by betting expenditure) account for 96% of the total betting expenditure
for FOBs. Our analysis also calculated the total balance (sum of all wins minus the sum of all
bets placed) for each account and sorted the 91,405 accounts from the highest losing to most
profitable. Strikingly, the analysis showed that the top 1% (739) of account holders with the highest
negative balance account for 43% of revenue (having a median loss of $14,782), while the top 5%
(3697) of account holders with the highest negative balance account for 71% of revenue (having a
median loss of $3,900). The analysis shows that the contribution by those most likely to be problem
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gamblers to the gambling volume, turnover and revenue is larger than the British based study [34]
reported in 2013.

Of immediate interest to our analysis, is to link and understand the distribution of these top 1%
and 5% gamblers across the 12 clusters that we have obtained from our analysis. As shown in
Figure 14, the both 1% gamblers (by frequency/volume) and top 1–5% of gamblers (i.e. excluding
the top 1%) reside mainly within the pink 2 and the brown 2 clusters.

Figure 14. The distribution of the top 1% and 1–5% gamblers (by frequency) across the 12 clusters

Figure 15 (top) shows an interesting observation: while the top 1% of gamblers by total amount
of dollars bet, reside mainly within the pink 2 cluster, they do not reside within the brown 2
cluster; instead, they were distributed within the cyan 2 and red 2 cluster. This may be explained
by our earlier observation whereby the gamblers within the brown 2 cluster hardly spent more
than $500 per bet. As expected, Figure 16 also shows that the top 1% of gamblers (in terms of total
loss) also resides mainly within the pink 2 cluster, but none existed within the brown 2 cluster.

However, when we look at the top 1–5% of gamblers in Figures 15 and 16, we can see that they
are more or less well-represented within the brown 2 cluster.

From these observations, we can see that when we extract the top 5% of gamblers as a whole, our
results do correspond to the British study [34], thus, further supporting the validity of our approach.
However, our analysis approach also allows us to reveal a rather distinct behaviour between the
pink 2 and brown 2 clusters: both exhibit typical problem gambler behaviours, in terms of
frequency of bet, clawback behaviour, and betting intensity; however, this is no longer the case in
terms of the dollar amount spent and total lost.

Challenges and Lessons Learned. The main challenge was establishing that the clusters that were
obtained were meaningful. A detractor of k-means clustering is that it will produce as many clusters
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as parameterised. We performed classification analysis using features that were not used as input
to the k-means clustering. This is important since previous work which used k-means clustering
in a process mining case study [10] also applied classification analysis to provide meaning to each
cluster. However, it was done using the same features as those used for clustering, which resulted
in a very high accuracy rate but added nothing more to our understanding of each cluster than the
threshold values of each variable used for generating the cluster groupings. By using features that
are independent from those used in clustering, we have confidently established that each cluster
has been “defined”, and exhibited unique behaviours and characteristics.

Figure 15. The distribution of the top 1% and 1–5% gamblers (by amount of dollars) across the 12 clusters

Other Observations and Key Recommendation. In addition to the lessons learned in Section 4,
we summarize here a few observations and recommendations that may benefit other practitioners.

We recommend the integration of unsupervised clustering with confirmatory statistics when
undertaking a process-cube approach to process mining projects. This allows an efficient and
theoretically-sound way to slice, dice, roll-up, and drill-down groups of processes. This is
especially true in process mining projects involving comparative analyses of various processes.

We question the need for XML-formatted data in process mining. Raw data often come in
a table-like format with fields whose meaning can be understood through discussions with
stakeholders. The self-defining property of XML is, thus, less necessary in practice. Processing
XML files requires a significantly more powerful computational capacity, not only to parse every
single XML element but also to handle the expanded file sizes: our original CSV-formatted data
(of less than 1.5 GB) was unnecessarily “blown up” to over 5.8 GB after converting it to the XES
format (with the majority of attributes that exist in the original data set excluded). We do not see
any practical benefit in using XML-formatted log vs. CSV-formatted log. In fact, extracting and
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manipulating CSV log is often faster and less heavyweight than dealing with XML documents as
the former does not entail the parsing and semantic interpretation of each XML element.

Figure 16. The distribution of the top 1% and 1–5% gamblers (by total loss) across the 12 clusters

5 Related Work

This section briefly discusses the approaches taken in other process mining case studies and
compare them with the approach taken in this article.

Early process mining case studies [9], [35], [36], focused mainly on the application of standard
process mining techniques, such as process discovery, performance analysis, and trace clustering.
Later process mining case studies [15], [16], [17] applied a combination of process and data
mining techniques. Our case study fits closer to the latter: we applied a balanced amalgamation
of process and data mining techniques. However, we ventured further by also using a multi faceted
approach involving process mining and well-established confirmatory statistics to assert, with high
confidence, the significance of insights/observations gained from our case study. Nevertheless, the
use of confirmatory statistics to assert the similarity/differences between various groups of “cases”
as demonstrated in this article is quite similar to a very recent work by Bolt et al. [37].

This case study confirms, to a certain extent, some of the observations and experiences reported
in other process mining studies. For instance, the use of clustering techniques to split original event
logs into smaller pieces was applied in our case study. However, instead of using trace/sequence
clustering as in [29], [36], we used k-means clustering [13] based on aggregated case-level features.
We did this since in our case, we were more concerned with obtaining logs that are properly split
based on gamblers’ characteristics than with reducing trace variants within each cluster (a feature
that is the focus of most trace clustering techniques, e.g. [30]). This is because two classes of
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gamblers may behave very differently, but can still be grouped within the same cluster, had trace
clustering been used. For instance, the (non-)existence of loop behaviours may not necessarily add
visual complexity to a process model, but they are a key differentiator between recreational and
problem gamblers.

We confirmed the scalability, and the ease-of-use of the Disco Tool (as reported in [7]) in terms of
its ability to quickly generate abstracted and easy-to-understand process models from a relatively
large event log. However, we encountered mixed experiences with respect to an earlier observation
made in [35] about the feasibility of conducting process mining analysis using the ProM Tool: the
quality and the robustness of the plug-ins in the ProM Tool proved to be highly variable with some
being robust and scalable enough to handle large data sets (e.g. the Inductive Miner plug-in), while
others tended to perform rather poorly (e.g. [3], [31]).

While our approach to process comparison was similar to other case studies, e.g. patient flows
comparisons [11], [15], our case study went further by studying the distribution of observed
differences, and asserted their statistical significance using well-established confirmatory statistics.
This is in contrast to the simple visual observations about behavioural differences conducted in
other case studies [7], [11], [15].

In relation to the concept of proces cube, our work has demonstrated how we can apply various
data mining and confirmatory statistical techniques as a way to slice, dice, roll-up, and drill-down
original data sets into appropriate chunks. This is in contrast to existing works (e.g. Ekanayake
et al. [33] and Suriadi et al. [7]) which focus on either using simple filtering techniques based on
some attribute values to split a data set into its appropriate “cubes”, or proposing the necessary tool
support to facilitate process cube-based analysis, such as the work by Vogelgesang et al. [38].

Most importantly, this article reported new lessons learned and recommendations that may be
novel and helpful to other process mining practitioners.

6 Conclusion

We demonstrated how to apply a diverse and complementary set of techniques from the domains
of process mining, data mining, and confirmatory statistics, as a unique expression of the process
cube concept, to characterize and assert differences in gambling behaviours exhibited by more than
94 thousand gamblers in New Zealand.

Most importantly, this case study reported a number of challenges and lessons learned that are
novel and would likely be beneficial to not only other process mining practitioners in general,
but also to researchers within the domain of problem gambling. Particularly, our approach has
demonstrated the viability of using a variety of data analysis techniques to perform evidence-based
identification of problem gamblers. These techniques can indeed be automated, thus, opening up
the possibility to perform continuous evidence-based analysis of gamblers in various community
with the goal of facilitating early-intervention for problem gamblers.

While this work has focused on establishing a foundation for a data-driven approach to
understanding different sub-groups of gamblers and problem gamblers, our future work will focus
on developing automated classification methods for detecting the early onset of problem gambling
behaviour in individuals for the purpose of intervention and prevention.
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