Complex Systems Informatics and Modeling Quarterly
CSIMQ), Issue 9, December 2016/January 2017, Pages 67—83
Published online by RTU Press, https://csimg-journals.rtu.lv
https://doi.org/10.7250/csimq.2016-9.04

ISSN: 2255-9922 online

Metadata Extraction and Management in Data Lakes With GEMMS

Christoph Quix!?*, Rihan Hai? and Ivan Vatov?

!Fraunhofer-Institute for Applied Information Technology FIT,
Schloss Birlinghoven 53754 Sankt Augustin, Germany
2Databases and Information Systems, RWTH Aachen University,
Templergraben 55, 52062 Aachen, Germany

christoph.quix@fit.fraunhofer.de (orcid.org/0000-0002-1698-4345),
hai@dbis.rwth—-aachen.de, ivan.vatov@rwth—-aachen.de

Abstract. In addition to volume and velocity, Big data is also characterized
by its variety. Variety in structure and semantics requires new integration
approaches which can resolve the integration challenges also for large
volumes of data. Data lakes should reduce the upfront integration costs
and provide a more flexible way for data integration and analysis, as
source data is loaded in its original structure to the data lake repository.
Some syntactic transformation might be applied to enable access to the
data in one common repository; however, a deep semantic integration is
done only after the initial loading of the data into the data lake. Thereby,
data is easily made available and can be restructured, aggregated, and
transformed as required by later applications. Metadata management is a
crucial component in a data lake, as the source data needs to be described by
metadata to capture its semantics. We developed a Generic and Extensible
Metadata Management System for data lakes (called GEMMS) that aims at
the automatic extraction of metadata from a wide variety of data sources.
Furthermore, the metadata is managed in an extensible metamodel that
distinguishes structural and semantical metadata. The use case applied for
evaluation is from the life science domain where the data is often stored
only in files which hinders data access and efficient querying. The GEMMS
framework has been proven to be useful in this domain. Especially, the
extensibility and flexibility of the framework are important, as data and
metadata structures in scientific experiments cannot be defined a priori.
Keywords: Metadata management, data integration, scientific data,
metadata extraction, data lakes.

1 Introduction

An increasing amount of data is generated today by various users, sensors, or systems. Although
the data is available and accessible, its processing and analysis is still often a manual task which
requires a lot of human guidance and control. Data has to be extracted from the data sources, it has

* Corresponding author

(© 2016 Quix et al. This is an open access article licensed under the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0).

Reference: C. Quix, R. Hai and I. Vatov, “Metadata Extraction and Management in Data Lakes With GEMMS,”
Complex Systems Informatics and Modeling Quarterly, CSIMQ, no. 9, pp. 67-83, 2016. [Online]. Available:
https://doi.org/10.7250/csimq.2016-9.04

be to cleaned, transformed, and mapped to a target system, and finally it has to be loaded into a
data management system where it can be integrated with other data. This is known as ETL process
(Extract-Transform-Load [1]) and works well for rather static data integration workflows (e.g., in
data warehouse systems). Recently, the integration process is becoming more an ELT process, i.e.,
after extraction, the data is loaded into a central repository, and the cleaning and transformation
steps are done within the repository [2]. Data lakes follow the same idea: data is extracted from
the sources and is stored in its original structure in a repository which is often based on Hadoop or
NoSQL database systems [3], [4]. These approaches focus on more dynamic environments, where
sources and schemas are frequently changing and cannot be completely known in advance. Their
advantage is that they reduce the integration efforts which have to be spent before the repository
can be used.

Scientific applications are an example in which flexible data management and integration
solutions are required [5], [6]. Especially, in the life science domain, data from experiments is
collected and processed in various files (e.g., CSV, Excel, or proprietary file formats of software
tools or hardware devices) using a broad range of tools (image analysis, statistics, and data mining
with tools such as MATLAB or R). There are no predefined schemas, standards are rarely used,
and the whole workflow is documented only (if at all) in a lab notebook in an unstructured form. To
avoid repeated experiments for the same substances, or to learn from other similar experiments, an
integration of this data would be very beneficial for the scientists as they could explore, query, and
analyze the data of previous experiments in order to improve the setup of their next experiments
[7]. However, such an analysis is not possible if there is no integrated data repository. Building
an integrated data repository for a wide range of scientific data is a challenge because of the lack
of well-defined schemas and frequently changing requirements. A metadata repository would be
already very helpful which should contain descriptions of the data sources (or data files) available.

Date |0g/2015
Autor |John Doe |
Label: Labell | | l
Mode [Measurement from above
Ernission wavelength start [[380 nm
Emission wavelength end 600 nm
Emissions wavelength step 2 nm
Scan count| 111
Spectrum (Em) [_ |2B0...850: 20 nm
Spectrum (ex) (Sector 1) 230...315: 5 nm
Spectrum (ex] {Sector 2) . |316...850: 10 nm

| Temperature; 255 “C

Figure 1. Spreadsheet Data Structure Example

Figure 1 shows a typical example for a data file in the life science domain. It is a spreadsheet
file which has been generated by the control software of some hardware device. The spreadsheet
is self-describing and contains metadata about the experiment (author, date, what was measured,
parameter values, etc.), as well as the measured data with its schema (e.g., headers in columns
and rows). Note that this is an adapted example and in fact both the raw data matrix and the
metadata properties are a lot larger. Other data files may have a different set of metadata properties,

68

various data structures (e.g., table- or tree-like structures instead of two-dimensional matrices),
multiple data units (e.g., several sheets within one Excel file), or completely different syntactical
formats (e.g., CSV, XML, JSON). Metadata might be encoded inside the file, in the filename, or
the directories of the file system. This heterogeneity of managing metadata and data makes it very
hard for scientists to search for data efficiently. Usually, keyword queries across the file system are
the major method for searching for information. Data management is done in scripts by reading
and writing text-based data files.

To support the scientist in her data management activities efficiently and effectively, a system
should provide more sophisticated metadata management functionalities which include especially
an interface that allows queries over (at least semi-)structured data and metadata. The metadata
should include structural information that describes the schema of the data, but also information
about the semantics of the metadata and data elements. Semantical information is important as
often acronyms or synonyms are used as the name of a schema element. By using semantic
annotations, such ambiguities can be avoided and the semantics of elements can be clearly defined.
Especially in the life sciences, ontologies are frequently used to standardize terminologies.

In this article, we describe the design, implementation, and evaluation of a Generic and
Extensible Metadata Management System (GEMMS) which (i) extracts data and metadata from
heterogeneous sources, (ii) stores the metadata in an extensible metamodel, (iii) enables the
annotation of the metadata with semantic information, and (iv) provides basic querying support.
The system should be also flexible and extensible, as new types of sources should be easily
integrated, which we prove in the evaluation. GEMMS is a major component in a data lake system
for scientific data in the life science domain, which we are currently developing in the HUMIT
project!. The project aims at an interactive and incremental integration approach in which a user
can browse and query a data lake and define mappings. The application domain of the project is
life science research, but the approach could be also applied to other domains. An overview of our
approach is shown Figure 2.

@ Data Lake
Metadata Query &
Explore
Extract Structure Data Semantic Data <:>
Semantic U o
O Annotations ser
S Raw Data
) -
Heterogeneous
Data Sources

Figure 2. System overview

The article is structured as follows. Section 2 discusses the existing work on incremental
integration systems. Section 3 introduces our metadata model, while Section 4 describes our system
and an algorithm for deriving a tree model from a semi-structured data source. In Section 5, we
evaluate our system with respect to extensibility and performance. The Section 6 concludes the
article and gives an outlook.

I See http://www.humit.de or [8].

69

2 Related Work
2.1 Data Lakes

Being a relatively young concept, the data lake has not yet been extensively researched. Data
lakes should store large parts of organization’s data, regardless of format and without requiring
an extensive schema design [4]. Data transformation or aggregation should be only applied after
the data has been loaded to a repository, as early transformations or aggregations might limit the
applicability of the data. Metadata is frequently pointed out as the key to describe and navigate
through the massive content of a data lake [9], but details about the functional requirements and
design of a metadata management component in data lakes are missing. Therefore, we address
them in this article.

First data lake systems are described in [4], [10] and [11]. Google’s Goods approach
[10] is similar to our approach as it also focuses on the collection of metadata for the
datasets which are available inside the organization. IBM’s approach [4] also deals with data
transformation (wrangling and curation). However, both systems do not aim at extracting different
metadata information automatically from various data sources, including semi-structured files.
Boci et al. [11] present a technical architecture for a data lake system based on the Hadoop
eco-system, which is applied in the area of flight tracking.

2.2 Dataspaces

A similar incremental integration approach as data lakes was introduced earlier with dataspaces
[12] which feature human defined mappings between different sources, defined in a pay-as-you-go
fashion. Mappings are defined only if they are required for a specific integration task; as in data
lakes, the source data stays in its original format [13]. Dataspaces and data lakes share the same
goal of using metadata to search over data sources, regardless of matter of their format. However,
metadata management was not considered a core functionality of the envisioned dataspace systems,
which is in contrast to our approach and the data lake idea.

An implementation of the dataspace concept is Personal Information Management (PIP) system,
also referred as iMeMex [14]. It manages personal information and provides functions such as
searching the user dataspace for a high variety of information. As in data lakes, the raw source data
is also kept in its original format.

GEMMS implements the data lake vision by automatically extracting metadata from data
sources and storing it in an extensible metamodel.

2.3 Model Management

Metadata management is strongly related to model management [15], which aims at providing
formal operators for models and mappings. The model representation which we apply in this
approach is less detailed than in model management; e.g., in our previous work [16], we developed
a generic metamodel for model management operations. This level of detail is not required here
as we focus on data processing and not on operations on data models. For the representation of
mappings, GEMMS is certainly less formal than the most of model management approaches, as
mappings are not yet explicitly modeled and only simple semantic annotations are possible. More
complex mappings are planned for the future, which will be based on our experience with nested
mappings for generic model management [17]. Other model management aspects, such as schema
matching [18] or schema summarization [19], are also relevant for data lakes, as extracted models
need to be matched and consolidated.

70

2.4 Semantic Annotations

Life science is a research area in which ontologies and other concepts of the semantic web are
used already for a long time [5], [20]. Many of the datasets which are available online in this
domain are ontologies or linked open datasets expressed in RDF. The Gene Ontology was one of
the first very rich ontologies in this domain [20], and it is still being maintained and extended.
Many ontologies can be found using domain-specific search engines, such as BioPortal?, which
also provides mappings between different ontologies. This also reveals a common problem in
the use of the semantic web technologies: although the technologies could be used to create a
common, shared knowledge base, many data sets do not make use of the feature to link to or reuse
other existing data sets/ontologies. This leads to the situation, that the same concept is described in
different ontologies with different identifiers. This is also supported by the recommended practice:
data sets should be converted to RDF to make data accessible for other users®.

This problem and the fact that a huge amount of data is originally not available in RDF
(e.g., relational databases, spreadsheets, CSVs, XML, or JSON files) has led to the idea that data
should be annotated with semantics rather than translated into another format. Schema.org [21]
is an initiative to create a common, well-curated, light-weight data model that can be used to
annotate existing structured and unstructured data. These annotations can be also integrated into
HTML pages and email messages and are being exploited by various applications from Google,
Microsoft, and others. We follow here a similar idea, we use a light-weight approach to annotate
existing data to simplify the exploration and usage of the data.

3 Metadata Model

Our motivating example in Figure 1 illustrates that data sources come with different types of
metadata. There is descriptive metadata in the header of the file which gives more information
about the contents of the source. It is usually just a list of key-value pairs which does not follow
a strict model. Values are either simple literals or could have also a complex structure (e.g., value
ranges such as ‘280-850’ in Figure 1). We will model this type of metadata as metadata properties.

More important for the extraction and integration of data is the structural information of the
source, i.e., what is the structure of the raw data contained in the source. In the example from
Figure 1, the raw data is contained in a matrix, but other data structures such as trees, graphs, or
simple tables are also possible. Therefore, we must be able to describe the various data structures
which might appear in a data source. In the example, we should model the information that the
matrix has two dimensions, and that £/1, £2, ... and 380, 382, ... are values in these dimensions.
This description can then later be used for mapping the source data to another data structure or to
formulate a query. We model this data as structure metadata in our approach.

Metadata properties and structure metadata are important elements to describe a data source,
but are only of limited use if we do not understand the names which are used for properties or
metadata elements. Furthermore, labels might be understandable for humans, but a system has to
have a more explicit representation of the semantic information. Therefore, our metamodel allows
the annotation of metadata with semantic data, which link the ‘plain’ metadata objects to elements
from a semantic model (e.g., an ontology).

In the following, we describe these metadata types in more detail.

2 http://bioportal .bioontology.org/
3 https://www.w3.0rg/2001/sw/hcls/notes/hcls-rdf-guide/

71

http://schema.org/

3.1 Metadata Types

Structure data* should provide information for navigating through the raw data and representing
individual models in data sources. To guarantee the genericness and extensibility in our approach,
the source data encountered in the source files retain their own model instead of being matched to
some predefined model. Moreover, representing the schema of each data source in its specific
schema language would eventually make querying the data lake very hard or even hinder it
completely, as for each source a different type of modeling and query language has to be taken
into account. Therefore, instead of constructing the structure using various schema languages (e.g.,
XSD or SQL DDL), the approach taken is to use a unified representation similar, but simpler than
the generic modeling framework GeRoMe which we developed earlier [16]. In GeRoMe, we had a
very detailed representation of all features and constraints; even simple types restricted by regular
expressions as in XML Schema could be represented in GeRoMe. We decided not to support such
very detailed constraints in this framework, as it is not necessary for the exploration of the available
data in the data lake. In this context, it is sufficient to have information about the structure of a data
source and its basic data types.

We formalized two subtypes of structure data in GEMMS - tree structures and matrix structures.
Data from the source, which is inherently tree-like (e.g., an XML document) is converted to an
internal abstract tree with the same structure. As we focus on the extraction of metadata, we retain
only element names and cardinalities. Details about the algorithms for inferring the structure data
from the source data are given in Section 4.3. Again, we use here a simpler approach than other
approaches for schema-extraction from semi-structured data (e.g., [22] or [23]), as we just want to
produce a comprehensive overview of the extracted data, and not a rigid schema to validate data
and ensure consistency of a database. Structure data can be also specified explicitly for a specific
file type (e.g., if all files with this type have the same structure) or it could be also completed by
user input.

Metadata properties are a set of customizable properties for each data source. There are metadata
properties provided by the file system, such as filename, size, location or date of last modification.
On the other hand, some metadata fields are part of the file contents which are highly specific
for each file type, e.g., the date or the author of an experiment. This type of metadata fields are
present along with the raw data, but in essence are metadata as key-value pairs which describe the
raw data. Therefore, they are of interest for our metadata management system. Their number is
arbitrary for each file, so metadata properties are not part of the structure data. As the metadata
properties and their names can be very heterogeneous in different data sources, we provide the
possibility to annotate the metadata with semantic data.

Semantic Data handles the meaning of the entities, described throughout the data sources.
The general idea is to allow annotations to be attached to different model elements. For instance,
a certain data source can be attached to a list of annotations, the same way as a dimensional value of
a matrix can be attached to a list of annotations, or even a node from the tree structure data. We are
not making any restrictions on the type of annotations which are allowed for a model element; the
annotation should make a reference to a clearly identified element. The simplest form of annotation
just uses an URI (Universal Resource Identifier) that refers to some ontology term. However, also
other types of identifiers could be used, as long as they are somehow unique and it is clear which
element is referenced.

The idea of these semantic annotations is that the user will do her querying using such elements
with a well-defined semantics instead of using the labels of metadata properties or tree elements
directly. Thus, the ontology to be used in the semantic annotations should be specific for the domain

4 In a strict manner, structure data should be replaced by the term structure metadata. However, in order
not to abuse the term metadata, structure data is used in the rest of the article.

72

of the data lake system. In the context of the HUMIT project, for instance, we plan to use the
BioAssay Ontology [24] as it represents quite well the elements which are used in our data sources.

Contrary to the structure data, semantic data cannot be inferred, so it is expected that annotations
are explicitly specified for a file type or done manually by a domain expert. As one of our future
works, the possibility of using classification algorithms over the set of already annotated data
attributes could be investigated. New data sources could then be automatically annotated based on
the annotations already available.

3.2 Conceptual View of the Metadata Model

Figure 3 depicts a high-level view over our metadata model using a simplified notation of UML
class diagrams. All relationships between the model elements are of the “weak” has-a relationship
(or aggregation). More specifically, some of the relationships are actually compositions, but it was
decided against the implied constraints of this kind of relationship. Four of the relationships are
modeled as annotation relationships, i.e., the semantic annotations are represented as parts of the
other model elements.

Data Semantic Ontology
&> g

File > annotatedBy Data Term

? &annotated By
<> DataUnit

Data Template Structure

Unit &> Data
? t

| |
Meta d ata TreeStructure MatrixStructure
Pro pe rty Data Data

Figure 3. Conceptual View of the Model

The model elements Data File and Data Unit have not been discussed so far. In this article, as
we mainly focus on accommodating files as data sources, we use the Data File element as one
model component to present the metadata of a file. We are currently working on the extension of
our approach to handle also general data sources (e.g., database systems or web services). Thus, in
the future, this concept will be generalized to an element Data Source.

As the main part of our model, a Data Unit represents an independent piece of data, which might
carry its own metadata and raw data. A data unit contains most of the relevant metadata information
and is flexible enough for other types of data sources as well. The data unit is an abstract entity,
containing the structure of the data it contains, plus additional metadata properties. As all other
elements, the data unit can be also annotated. Furthermore, for each file type, the scope of a data
unit and which metadata properties are part of a data unit can be defined. This information is
provided by a Data Unit Template. For different file formats, the data unit has different semantics.
For instance, in Excel files, data units represent worksheets; in an XML document, different data
units could represent different sub-trees of the whole XML document tree. In a relational database
system, a data unit could be a database or table space. The main two advantages of applying data
units are that they give the user flexibility during the data ingestion process, and also provide a
level of abstraction above data files. Data files, as well as other data sources in general, can be seen
as containers for data units, since the latter are the ones most relevant for the metadata.

With regard to the relationship between structure data and data unit, the structure data is attached
to a data unit, since it carries the raw data, whose schema should be remembered. The cardinality of
the relationship is one to one, indicating that each data unit has at most one structure data element.

73

The top-level structure data element can hold more tree or matrix structure elements, depending
on the actual type of the data it models.

Metadata properties are part of both, a data unit and a data file. In the first case, metadata
properties model custom in-file metadata, which the user has to specify beforehand, while in the
second case they are automatically extracted from each file and contain file system attributes plus
the media type. Although file system attributes and the media type are usually specific for the data
sources, and do not provide much (or any) insight into the data of the files, they are nevertheless
mandatory for revision and reproducibility purposes.

As summary, the data model described in this section performs two main tasks: (1) capture
the general metadata properties in the form of key-value pairs, as well as structure data to aid in
future querying, and (2) attach annotations (usually represented as URIs to ontology elements) to
metadata elements.

4 System Design

We divide the functionalities of GEMMS into three parts: metadata extraction, transformation
of the metadata to the metadata model, and metadata storage in a data store. Design and
implementation of the system aim at extensibility and flexibility. Future changes, such as new
data sources with yet unknown data structures and interfaces, should be realized with a minimum
overhead. The system design follows SOLID principles for object-oriented software construction
[25]. In this section we give an overview of the system architecture, with following subsections
sequentially elaborating on the details.

4.1 System Architecture

The high-level design of the system is depicted in Figure 4. The implementation of each component
contains multiple classes. Even each relationship has a ‘uses’ role, the most highly coupled
component is the metadata manager, which orchestrates the whole process. Another self-contained
module is the extractor, which uses a module for media type file detection and a component parsing
files. The components are described in more detailed in the following.

The Metadata Manager invokes the functions of the other modules and controls the whole
ingestion process. It is usually invoked at the arrival of new files, either explicitly by a user
using the command-line interface or by a regularly scheduled job. The metadata manager reads
its parameters and task from a configuration file and then starts processing the input files.

With the assistance of the Media Type Detector and the Parser Component, the Extractor
Component extracts the metadata from files. Given an input file, the Media Type Detector detects
its format, returns the information to the Extractor Component, which instantiates a corresponding

Media Type
Detector
Extractor
Component
Parser
Component
Metadata Serialization
Manager Component Structure Metadata
Parser Parser
Persistence Data
Component Store

Figure 4. Overview of the system architecture

74

Parser Component. The media type detector is based to a large degree on Apache Tika’, a
framework for the detection of file types and extraction of metadata and data for a large number
of file types. Media type detection will first investigate the file extension, but as this might be
too generic (e.g., for XML files), it is possible to refine the detection strategy by specifying byte
patterns (which should occur at the beginning of a file) or by providing custom detector classes.
Tika provides detection mechanisms for many standard file types, but it can be also extended with
new file types. We made use of this extension mechanism to implement detector classes for some
life-science-specific file types (see Section 5).

When the type of input file is known, the Parser Component can read the inner structure of the
file and extract all the needed metadata. Every parser understands the file type and data structure
of the file which it is built for, and takes care about specific metadata — either structure data or
custom metadata properties. Note that the high expressiveness of some formats, such as XML,
implies the existence of multiple parsers for the same data file type, since the medium is clear
(e.g., XML DOM tree), but the structure could be entirely different. The main distinction between
extractor and parser components is that the extractor module manages different types of metadata,
e.g., structure data or metadata properties, while the parser performs the actual file reading and is
specialized in a single type and file structure. The parser uses third-party frameworks working on
a lower level than Tika (e.g., Apache POI).

The parsers also make use of several algorithms, for instance, to detect a matrix structure inside
a spreadsheet (as in Figure 1) or to create an abstract description of a tree structure (i.e., a structure
similar to a DTD or an XML Schema). Due to space constraints, we can only present one of these
algorithms in the article; the tree structure inference algorithm is described in more detail below in
Section 4.3.

One important connection point between the data model and the system components is the Data
Unit Template. It is used to define what information should be extracted and the module using
it most actively is the parser. Intuitively, a data unit template gives details about the metadata
needed from each data file type (cf. Section 3). The parser will use the template to instantiate a
corresponding data unit, and then fill this data unit with the metadata extracted from the file. Data
unit templates can be more specific than a file type. For instance, there is one file type for Excel
files, but there can be several data unit templates, each one specifying a different set of metadata
properties to be extracted from the spreadsheet (the metadata properties in the header of a sheet can
be different for each file). For XML documents, the data unit templates contains XPath expressions
which specify the location of data units and metadata in the XML file.

The Persistence Component accesses the data storage available for GEMMS. As a facade, it
shields the intricacies of the concrete storage solution and provides a common and unified interface.
The Serialization Component performs the transformation between models and the storage format.
As the serialized objects have to be handled by the storage engine, it is closely connected to the
persistence component. In our current implementation, we use JSON as serialization format and
MongoDB as storage engine.

4.2 System Behavior

In this subsection, we discuss about behavioral rules followed in the communication between the
system components, and the sequence of the messages passed among them, as shown on Figure 5.

The process is initiated by the user who inputs a configuration file through the command line
interface. This file contains the data unit templates for the file types of interest, and a list of
directories which has to be traversed for data files. The metadata manager then uses the serialization
component to parse the file to obtain a list of files and a list of data unit templates. The extractor
component is inquired about a specific extractor for each of the files from the list and it in turn

> http://tika.apache.org

75

asks the media type detector to do the job for it, providing it with the current data file. Please note
that the mapping between media types and the extractors responsible is fully customizable in a
configuration file. So this configuration file is used by the media type detector which instantiates
an applicable extractor, which is eventually returned to its client — the metadata manager.

Once a specific extractor is available, it extracts the data from all the files it is responsible for.
The most notable parameters of this invocation are the data file and all the data unit templates
given for the media type of the file. Each extractor extracts structure data and metadata properties
using parsers suitable for the aim. The knowledge which parser is responsible for which metadata
and file type is contained in the extractors. After the metadata has been collected by the extractor
component, it is combined in data units and returned to the metadata manager. Recall that a single
file of data could produce multiple data units, containing its metadata. Once a data file instance
with its corresponding list of data units is available to the metadata manager, it serializes it via the
serialization component and then passes it to the persistence component.

Metadata Serialization Extractor Media Type Parser Persistence
Manager Component Component Detector Component Component
E start(settingsFile) | parse(settingFile)

parse(settingsFile)

filelnstances

detect(filelnstance) o detect(filelnstance)

: extractor
extractor 5 eyt
< """""""""""" FTTTTmTmmommmmmmemmemmes o :
extract(filelnstance, dataUnitTemplates) | § H .
0 > extractStructureData(filelnstance, dataUnitTemplates) N
structur.eData T
extractProperties(filelnstance, dataUnitTemplates) N H
H properties g
dataFile Rl e e e e LR
[Cmmmmmmmmmmmmm s bbb bbby

serialize(dataFile)

srializedDataFile ! H
[Crmmmmmmmmmeme e T 1 persist(serializedDataFile) 1

Figure 5. Behavioural overview

4.3 Tree Structure Inference Algorithm

Algorithm 1 represented in Figure 6 sketches the pruning procedure to detect the tree structure in a
semi-structured data structure. The algorithm is less elaborate than similar approaches (e.g., [26]),
but sufficient for our aim of supporting query formulation. It uses a Breadth-First-Search iteration
over all the tree nodes to collect them in a stack. The leaf nodes are eventually at the top of the
stack and the root — at the bottom. Then iterating this stack ensures that elements are visited from
bottom to top. Each element e from the same level in the tree is pushed to a list unless there is an
element there equal to e. If an equal element is contained in the list, the original one is removed
form the tree. The list gets emptied on each change of the sub-tree root observed in the moment.
Informally, it runs bottom-to-top and starts by merging all the children of a node with the same
name. In the simplified example (Figure 7), these are the two c leaf nodes. The procedure is
repeated recursively level-wise to the top. Since both b nodes are on the same level and their
children are the same (they both have a single c and a single e node), they are merged. The result
is shown on the right part of the figure. The resulting representation is much more concise than the
original tree and includes everything needed for future query procedures over the data it models.

76

As mentioned earlier, cardinality is included in each node, but is not shown on the picture for
simplicity.

Data: stack bfsStack, list noDuplicates, breadth-first iterator bf Iter
input: the root node root of a tree
Result: the tree rooted at root with all equivalent sub-trees pruned
prune()
if root is empty then
| return
end
while bf I'ter has next do
let child = bf Iter.next()
bf sStack.push(child)

end
/* root is now at the bottom, right-most leaf is at the top of
the stack */

let node = bfsStack.pop()
while node.parent != null and bfsStack is not empty do
let parent = node.parent

/% traverse all nodes at the same level (node.parent == parent)

*/

while node.parent == parent and bfsStack is not empty do
if noDuplicates contains node then
/% the tree rooted at node has equivalent tree which has
been wvisited, so remove the current one; note that
contains uses equals */

remove node from tree
else
| add node to noDuplicates
end
let node = bfsStack.pop()

end
empty noDuplicates

end

Figure 6. Tree Structure Inference Algorithm (Algorithm 1)

4.4 System Implementation

As stated above, one important component in the implementation of the system is Apache Tika,
which provides the basic framework to detect file types and to parse their content. However, as the
structures of the files are different, various parsers are necessary to parse the internal data structures
of a file. Figure 8 gives an overview of the implemented parsers.

The parser classes handle specific data formats and data file’s schema instances and take care
of both the metadata properties and the structure data. Of course, those two tasks are delegated
to separate parsers for the same file type. This approach could be seen as a bit slower compared
to one where a single parser extracts the metadata properties and infers the structure data. It is,
however, much more extensible and flexible; on the other hand, the performance penalty is not
that big either. Each specific parser knows the schema of the data it has to take care of. Similar
to the Tika’s approach, each parser’s parse process is started through an interface common for all
the parsers in the hierarchy (structure and metadata). Note that each parser knows about schema

77

specifics, but not concrete custom media types, so that a single parser could be reused in the future
for other file types, having similar property or structure data arrangement. The StructureParser
knows the type of metadata it has to parse and each of its derived classes knows how to parse its
specific structure data. The same holds for the CustomMetadataParser and the derived types in its
hierarchy.

(a)
/< \\) PN

Figure 7. Example for the pruning procedure

A similar approach is applied for the implementation of the extractor components. For each
specific data structure (e.g., CSV, XML), an extractor class is provided that implements a general
interface. The extractor classes can be seen as a bridge between the parsers and the clients
of those parsers. They hide the notion of different metadata, such as properties, structure, or
semantic metadata and provide a single, unified interface to simply extract all known metadata
in the best-effort manner from a given file. In addition, they also hide the parsers themselves,
so the end-user only cares about different extractor types. For more convenient extensibility and
maintainability, each extractor is associated with the media type of the file it is able to extract
metadata from.

Custom
MetadataParser

—— T —

StructureParser

Xml Csv SpreadsheetMatrix CustomMetadata SpreadsheetRow
StructureParser StructureParser StructureParser XmlParser PropertyParser
Xml XmiCol XmIRow
PropertyParser PropertyParser PropertyParser

Figure 8. Parser Implementation

5 Evaluation

The goal of the evaluation is twofold. On the one hand, we want to show that GEMMS as a
framework is actually useful and that it reduces the effort for metadata management in data lakes.
Flexibility and extensibility were mentioned as the main requirements of the system, therefore,
the first part of the evaluation (cf. Section 5.1) focuses on this aspect. On the other hand, we also
evaluated the performance of the metadata extraction components, as it should be possible to apply
the system to a large number of files (cf. Section 5.2).

As a programming framework, GEMMS is not intended to be used by end-users. An end-user
application that uses GEMMS for metadata extraction is under development in the HUMIT project,
but is yet not ready for evaluation.

78

5.1 Flexibility and Extensibility of GEMMS

GEMMS has been developed with standard file types (e.g., Excel, CSV, XML) and a few
life-science-specific file types in mind. In the evaluation, we analyzed the required steps and efforts
for the introduction of new file types. We used the file format Structured Data Format (SDF)® which
is significantly different from the data formats considered earlier; the only commonality is that it
is also text-based. The other file type is X-Chembench’, which is very similar to CSV files. Both
file types are used to describe chemical compounds or molecules.

The required steps are shown in the left column of Table 1. The 2nd and 3rd column indicate the
number of lines of code to implement the required functionality.

The registration of the new media type (file type) is straightforward and just requires a few lines
of XML code in the file custom-mimetypes.xml which is used by Tika to recognize file types
(see Figure 9). The file types have also to be mentioned in one Java class. The definition of the
data unit templates requires a little bit more work, as the structure and metadata properties of
interest have to be defined. The most expensive part for SDF files is the parser, as these files have
a specific structure that cannot be parsed by one of the existing parsers. For the Chembench file
type, the existing CSV parser can be used. This would apply also to XML documents with a custom
schema: the existing XML parser could be reused, the data unit template and the extractor just need
to provide XPath expressions for the extraction of data units and metadata properties.

Table 1. Lines of code needed for each new file type

Step SDF | Chembench File New
.)) 7 6 | custom-mimetypes.xml
Media Type Registration
1 1 | CustomTypes.java
22 0 | TabularTxtDataUnitTemplate.java v
Data Unit Template 0 3 | DataUnitTemplateDeserializer.java
1 1 | DataUnitTemplates.java
Parser 85 0 | SdfPropertyParser.java v
17 0 | SdfExtractor.java v
Extractor
0 17 | ChembenchDescriptorExtractor.java | v/
Mapping to Media Type 3 3 | custom-mimetypes.xml

After the parser has been defined, the extractor has to be implemented for the new file type. This
component integrates the parser with the data unit templates and extracts the required data. Finally,
the Tika configuration file has to be extended with a mapping of the file type to the new extractor
class.

Overall, we can see that only very little efforts are required for the extension of the framework
for new data file types. With an increasing number of file types already known by GEMMS, the
effort for registering new file types should become smaller, as more code can be reused and the
implementation of new parsers is not necessary. By the introduction of the new file types, it has
further been shown that the designed metadata model is robust enough and there are no reasons to
change it.

6 SDF, https://en.wikipedia.org/wiki/Chemical_table_file#SDF.
7 https://chembench.mml.unc.edu/help-fileformats

79

https://en.wikipedia.org/wiki/Chemical_table_file#SDF

<mime-type type="chemical/x-mdl-sdfile">
<sub-class-of type="text/plain"/>
<acronym>sdf</acronym>
<_comment>Structure-Data File</_comment>
<glob pattern="*.(sdf" />
<glob pattern="*.mol" />

</mime-type>

<mime-type type="chemical/chembench-descriptor">
<sub-class-of type="text/plain" />
<acronym>x</acronym>
<_comment>Descriptor file format used by Chembench</_pomment>
<glob pattern="#*.x" />
</mime-type>

<mappings>
<mapping type="chemical/x-mdl-sdfile">
<mdms :extractor-class>de.fraunhofer.fit.mdms.extractor.SdfExtractor</mdms:extractor-class>
</mapping>
<mapping type="chemical/chembench-descriptor">
<mdms :extractor-class>
de.fraunhofer.fit.mdms.extractor.ChembenchDescriptorExtractor
</mdms :extractor-class>
</mapping>
</mappings>

Figure 9. An excerpt from the application configuration file: introduction of new media types and a mapping
between them and extractor classes

5.2 Performance Measures

We evaluated the performance of three extractor classes that have been implemented during the
development of GEMMS. The files are generated by hardware devices in our life science lab. The
file types are proprietary file formats that have been specified by the manufacturers of these devices.
The tests have been run for the three file types with distinction between metadata properties and
structure data for two of the formats. Note that data formats do not correspond directly to the
extension of the data file. For instance, a single format is based on spreadsheets and the other two
are based on XML, but the data in them is structured differently. The first type of XML-based data
format encodes its metadata and raw data in a straight-forward tree fashion. XML elements are
nested in each other and metadata and raw data values are contained in the leaves. The second type
of XML-based data format has a little more peculiar structure. It represents tables, in which the
keys of metadata properties are all on the same row, while the values are in the corresponding cells
on the row below. Raw data is contained in tables with header columns. Cells are child nodes of
the row elements.

For each of the file types, the pair of structure and metadata properties parsers has been run three
times in a row in a JUnit test method. The tests have been run on Java SE 1.8.0_45 on a Windows
7 Professional 64-bit Lenovo ThinkPad T440 with 8GB RAM and an Intel Core 15-4210U CPU
at 1.7 GHz. The persistence layer of the application is realized with MongoDB 3.0.2. The mean
of the those three run-time durations is what is shown in Table 2. The evaluation criteria in Table
2, extraction procedure is measured by the use of extractors plus file type detection and parsing
of the ingestion process configuration string. During such an extractor run, an XML configuration
string is parsed for the list of the input files and the data unit templates. To simulate real-world
conditions, data unit templates for several different media types are encoded in the ingestion
process configuration file used in the extraction procedures, even though a single data unit template
is eventually matched. Just as with the parsing procedures, for each media type, the extraction
procedure test case is run three times in a row and the mean run-time duration is considered.

As expected, the average durations of the parsing procedures are lower than the extraction
procedures. The slower performance is caused by the parsing of the configuration string for the
ingestion process and the automatic detection of the extractor suitable for the job. The great
difference of both parsing and extraction times of the application/x-nanodrop+xml file type in

80

comparison to the other two, is caused by one particular file instance whose extraction and parsing
has taken respectively 11.13 and 11.73 seconds on average.

Table 2. Performance of Parsers and Extractors

Media Type File Count | Extraction Time (s) | Parsing Time (s)
x-2100bioanalyzer+xml 44 10.01 7.46
x-tecan+vnd.openxmlformats.. 26 13.03 8.95
x-nanodrop+xml 27 25.83 24.07

6 Conclusions and Outlook

In this article, we proposed the generic and extensible metadata management system GEMMS,
designed and implemented as the heart of a data lake, which should increase the productivity in
analysis and management of heterogeneous data. Based on a classification of metadata - structure
data, metadata properties and semantic data — we derived a generic, extensible and flexible
metadata model providing easy accommodation for new or evolving metadata of various data
sources. The framework is also extensible as new types of data sources can be easily integrated
as we have shown in the evaluation.

Metadata extraction is one of the core features of our data lake implementation [27]. Based on
the extracted metadata and schema information, further methods for the semantic enrichment of
the data lake are currently being implemented. For instance, schema matching [28] is being applied
to identify correspondences between the extracted metadata elements; schema summarization [19]
creates consolidated representations of the extracted schemas; and mapping composition and query
rewriting [17] are applied for data integration.

As our focus so far was on the extensibility of the core system, performance and user interfaces
for end users require future work. Although performance is not a major concern (the ingestion
process could be easily done as batch processes in regular intervals), a faster processing would be
desirable. The querying functionality is yet simple (the user can query for data units annotated with
certain ontology terms); an interactive query and exploration interface is one of the next milestones
in the HUMIT project. Finally, we also need to consider database systems and similar systems as
data sources; however, we are confident that the required changes or extensions will not break the
core system which we have developed so far.

Acknowledgements. This work was supported by the German Federal Ministry of Education and
Research (BMBF) under the project HUMIT (http://humit.de, FKZ 01IS14007A) and by the Klaus
Tschira Stiftung under the mi-Mappa project (http://dbis.rwth-aachen.de/mi-Mappa/, project no.
00.263.2015).

References

[1] P. Vassiliadis and A. Simitsis, “Extraction, Transformation, and Loading,” in
Encyclopedia of Database Systems, pp. 1095-1101, 2009. [Online]. Available:
http://doi.org/10.1007/978-0-387-39940-9_158

[2] U. Dayal, M. Castellanos, A. Simitsis and K. Wilkinson, “Data Integration Flows
for Business Intelligence,” in Proc. EDBT, pp. 1-11, 2009. [Online]. Available:
https://doi.org/10.1145/1516360.1516362

[3] B. Stein and A. Morrison, “The Enterprise Data Lake: Better Integration and Deeper
Analytics,” Technology Forecast: Rethinking integration, no. 1, pp. 1-9, 2014. [Online].
Available: http://www.pwc.com/us/en/technology-forecast/2014/cloud-computing/assets/pdf/
pwc-technology-forecast-data-lakes.pdf

81

http://doi.org/10.1007/978-0-387-39940-9_158
https://doi.org/10.1145/1516360.1516362
http://www.pwc.com/us/en/technology-forecast/2014/cloud-computing/assets/pdf/pwc-technology-forecast-data-lakes.pdf
http://www.pwc.com/us/en/technology-forecast/2014/cloud-computing/assets/pdf/pwc-technology-forecast-data-lakes.pdf

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

I. Terrizzano, P.M. Schwarz, M. Roth and J.E. Colino, “Data Wrangling: The Challenging
Journey From the Wild to the Lake,” in Proc. CIDR, pp. 9, 2015. [Online]. Available:
http://www.cidrdb.org/cidr2015/Papers/CIDR15_Paper2.pdf

S.C. Boulakia and U. Leser, “Next Generation Data Integration for Life Sciences,” in Proc. ICDE,
pp- 1366-1369, 2011. [Online]. Available: http://doi.org/10.1109/ICDE.2011.5767957

M.J. Villanueva, F. Valverde, A.M. Levin and O. Pastor, “Diagen: A Model-Driven Framework for
Integrating Bioinformatic Tools,” in Selected Papers from CAiSE Forum 2011, ser. LNBIP, vol. 107,
pp- 49-63, 2012. [Online]. Available: http://doi.org/10.1007/978-3-642-29749-6_4

M. Stonebraker, D. Bruckner, L.LF. Ilyas, G. Beskales, M. Cherniack, S.B. Zdonik, A. Pagan and
S. Xu, “Data Curation at Scale: The Data Tamer System,” in Proc. 6th Conf. on Innovative Data
Systems Research (CIDR), pp. 10, 2013. [Online]. Available: http://www.cidrdb.org/cidr2013/Papers/
CIDR13_Paper28.pdf

C. Quix, T. Berlage and M. Jarke, “Interactive Pay-As-You-Go-Integration of Life Science Data: The
HUMIT Approach,” ERCIM News, no. 104, 2016. [Online]. Available: http://ercim-news.ercim.eu/
enl04/special/interactive-pay-as-you-go-integration-of-life-science-data-the-humit-approach

M. Chessell, F. Scheepers, N. Nguyen, R. van Kessel and R. van der Starre, “Governing and Managing
Big Data for Analytics and Decision Makers,” pp. 26, Aug. 2014. [Online]. Available: http://www.
redbooks.ibm.com/redpapers/pdfs/redp5120.pdf

A.Y. Halevy, F. Korn, N.F. Noy, C. Olston, N. Polyzotis, S. Roy and S.E. Whang, “Goods:
Organizing Google’s Datasets,” in Proc. SIGMOD, pp. 795-806, 2016. [Online]. Available:
https://doi.org/10.1145/2882903.2903730

E. Boci and S. Thistlethwaite, “A Novel BIG DATA Architecture in Support of ADS-B Data
Analytic,” in Proc. Integrated Communication, Navigation, and Surveillance Conference (ICNS),
pp. C1-1-C1-8, April 2015. [Online]. Available: https://doi.org/10.1109/icnsurv.2015.7121281

M. Franklin, A. Halevy and D. Maier, “From Databases to Dataspaces: A New Abstraction for
Information Management,” SIGMOD Record, vol. 34, no. 4, pp. 27-33, 2005. [Online]. Available:
https://doi.org/10.1145/1107499.1107502

A.D. Sarma, X. Dong and A.Y. Halevy, “Bootstrapping Pay-As-You-Go Data Integration Systems,”
in Proc. SIGMOD, pp. 861-874, 2008. [Online]. Available: https://doi.org/10.1145/1376616.1376702

L. Blunschi, J.-P. Dittrich, O.R. Girard, S.K. Karakashian and M.A.V. Salles, “A Dataspace Odyssey:
The Imemex Personal Dataspace Management System,” in Proc. CIDR, ser. CIDR 07, pp. 114-119,
2007.

P.A. Bernstein, A.Y. Halevy and R. Pottinger, “A Vision for Management of Complex
Models,” SIGMOD Record, vol. 29, no. 4, pp. 55-63, 2000. [Online]. Available:
https://doi.org/10.1145/369275.369289

D. Kensche, C. Quix, M.A. Chatti and M. Jarke, “GeRoMe: A Generic Role Based Metamodel
for Model Management,” Journal on Data Semantics, VIII, pp. 82—-117, 2007. [Online]. Available:
https://doi.org/10.1007/978-3-540-70664-9_4

D. Kensche, C. Quix, X. Li, Y. Li and M. Jarke, “Generic Schema Mappings for Composition
and Query Answering,” Data Knowl. Eng., vol. 68, no. 7, pp. 599-621, 2009. [Online]. Available:
https://doi.org/10.1016/j.datak.2009.02.006

E. Rahm and P.A. Bernstein, “A Survey of Approaches to Automatic Schema Matching,” VLDB
Journal, vol. 10, no. 4, pp. 334-350, 2001. [Online]. Available: https://doi.org/10.1007/s007780100057

C. Yu and H. Jagadish, “Schema Summarization,” in Proc. VLDB, Seoul, pp. 319-330, 2006.

82

http://www.cidrdb.org/cidr2015/Papers/CIDR15_Paper2.pdf
http://doi.org/10.1109/ICDE.2011.5767957
http://doi.org/10.1007/978-3-642-29749-6_4
http://www.cidrdb.org/cidr2013/Papers/CIDR13_Paper28.pdf
http://www.cidrdb.org/cidr2013/Papers/CIDR13_Paper28.pdf
http://ercim-news.ercim.eu/en104/special/interactive-pay-as-you-go-integration-of-life-science-data-the-humit-approach
http://ercim-news.ercim.eu/en104/special/interactive-pay-as-you-go-integration-of-life-science-data-the-humit-approach
http://www.redbooks.ibm.com/redpapers/pdfs/redp5120.pdf
http://www.redbooks.ibm.com/redpapers/pdfs/redp5120.pdf
https://doi.org/10.1145/2882903.2903730
https://doi.org/10.1109/icnsurv.2015.7121281
https://doi.org/10.1145/1107499.1107502
https://doi.org/10.1145/1376616.1376702
https://doi.org/10.1145/369275.369289
https://doi.org/10.1007/978-3-540-70664-9_4
https://doi.org/10.1016/j.datak.2009.02.006
https://doi.org/10.1007/s007780100057

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

B. Smith, J.K&hler and A. Kumar, “On the Application of Formal Principles to Life Science Data:
a Case Study in the Gene Ontology,” in 1st Intl. Workshop on Data Integration in the Life Sciences
(DILS), ser. LNCS, vol. 2994. Leipzig, Germany: Springer, pp. 79-94, 2004. [Online]. Available:
http://doi.org/10.1007/978-3-540-24745-6_6

R.V. Guha, D. Brickley and S. Macbeth, “Schema.org: Evolution of Structured Data
on the Web,” Commun. ACM, vol. 59, no. 2, pp. 44-51, 2016. [Online]. Available:
http://doi.org/10.1145/2844544

M. Klettke, U. Storl and S. Scherzinger, “Schema Extraction and Structural QOutlier Detection for
JSON-Based NoSQL Data Stores,” in Fachtagung Datenbanksysteme fiir Business, Technologie und
Web (BTW), ser. LNI, T. Seidl, N. Ritter, H. Schoning, K. Sattler, T. Hérder, S. Friedrich and
W. Wingerath, Eds., vol. 241. Hamburg, Germany: GI, pp. 425-444, 2015. [Online]. Available:
http://subs.emis.de/LNI/Proceedings/Proceedings241/article35.html

J. Hegewald, F. Naumann and M. Weis, ‘“Xstruct: Efficient Schema Extraction From Multiple
and Large XML Documents,” in Proc. 22nd Intl. Conf. on Data Engineering (Workshops), IEEE,
pp. 81-81, 2006. [Online]. Available: https://doi.org/10.1109/ICDEW.2006.166

S. Abeyruwan, U.D. Vempati, H. Kiiciik-McGinty, U. Visser, A. Koleti, A. Mir, K. Sakurai,
C. Chung, J.A. Bittker, P.A. Clemons, S. Brudz, A. Siripala, A.J. Morales, M. Romacker, D. Twomey,
S. Bureeva, V.P. Lemmon and S.C. Schiirer, “Evolving Bioassay Ontology (BAO): Modularization,
Integration and Applications,” Journal of Biomedical Semantics, vol. 5, no. S-1, p. S5, 2014. [Online].
Available: https://doi.org/10.1186/2041-1480-5-s1-s5

R.C. Martin, “Agile Software Development: Principles, Patterns and Practices,” Prentice Hall PTR,
Upper Saddle River, NJ, 2003.

G.J. Bex, F. Neven and S. Vansummeren, “Inferring XML Schema Definitions From
XML Data,” in VLDB °’07 Proc. 33rd international conference on Very large
data bases, Vienna, Austria, Sep. 23-27, pp. 998-1009, 2007. [Online]. Available:
http://www.vldb.org/conf/2007/papers/research/p998-bex.pdf

R. Hai, S. Geisler and C. Quix, “Constance: An Intelligent Data Lake System,” in Proc. SIGMOD,
pp- 2097-2100, 2016. [Online]. Available: https://doi.org/10.1145/2882903.2899389

C. Quix, D. Kensche and X. Li, “Matching of Ontologies with XML Schemas Using
a Generic Metamodel,” in Proc. ODBASE, pp. 1081-1098, 2007. [Online]. Available:
https://doi.org/10.1007/978-3-540-76848-7_71

Proc. of SIGMOD/PODS’ 16 International Conference on Management of Data San Francisco, CA,
USA, June 26-July 1, 2016. [Online]. Available: https://doi.org/10.1145/2882903

83

http://doi.org/10.1007/978-3-540-24745-6_6
http://doi.org/10.1145/2844544
http://subs.emis.de/LNI/Proceedings/Proceedings241/article35.html
https://doi.org/10.1109/ICDEW.2006.166
https://doi.org/10.1186/2041-1480-5-s1-s5
http://www.vldb.org/conf/2007/papers/research/p998-bex.pdf
https://doi.org/10.1145/2882903.2899389
https://doi.org/10.1007/978-3-540-76848-7_71
https://doi.org/10.1145/2882903

	Metadata Extraction and Management in Data Lakes With GEMMS

