
Complex Systems Informatics and Modeling Quarterly (CSIMQ)

eISSN: 2255-9922

Published online by RTU Press, https://csimq-journals.rtu.lv

Article 200, Issue 36, September/October 2023, Pages 68–86

https://doi.org/10.7250/csimq.2023-36.04

Exploring Low-Code Development:

A Comprehensive Literature Review

Karlis Rokis1 and Marite Kirikova2*

1 Alumni of Riga Technical University, 6A Kipsalas Street, Riga, LV-1048, Latvia
2 Institute of Applied Computer Systems, Riga Technical University, 6A Kipsalas Street,

Riga, LV-1048, Latvia

rokis.karlis@gmail.com, marite.kirikova@rtu.lv

Abstract. Low-code development provides the ability to create software using

visual application development tools, predefined components, and automation,

minimizing the reliance on manual coding. Furthermore, it enables individuals

with limited programming expertise to actively contribute to software

development in collaboration with information technology (IT) professionals,

improving the alignment between customer or business requirements and the

developed solution. This approach speeds up the development process, fosters

closer collaboration between software development and business teams, and

enhances the organization’s ability to respond to business and market demands

or changes. In this article, existing knowledge of low-code development from

multiple perspectives is summarized, including the definitions, used tools,

applied development lifecycles, application areas, potential benefits, challenges,

and, consequently, relevant development and delivery principles.

Keywords: Low-Code Development, Low-Code Platforms, Low-Code

Benefits, Low-Code Principles, Software Development.

1 Introduction

Low-code development is a modern approach to software development that utilizes visual tools,

component reusability, and automation to minimize the need for manual coding and speed up the

delivery process. Furthermore, low-code development enables a wide range of users, including

non-professional developers from business backgrounds, to participate in software development.

This fosters better collaboration between IT and business departments, improves responsiveness

to business and market requirements, and helps address the shortage of skilled developers. It is

important to note that the scope of low-code development extends beyond specific application

domains, encompassing various domains such as employee, customer, or partner-facing web or

*Corresponding author

© 2023 Karlis Rokis and Marite Kirikova. This is an open access article licensed under the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/4.0).

Reference: K. Rokis and M. Kirikova, “Exploring Low-Code Development: A Comprehensive Literature Review,” Complex

Systems Informatics and Modeling Quarterly, CSIMQ, no. 36, pp. 68–86, 2023. Available: https://doi.org/10.7250/csimq.2023-

36.04

Additional information. Author’s ORCID iD: M. Kirikova – https://orcid.org/0000-0002-1678-9523. PII S225599222300200X.

Received: 18 May 2023. Accepted: 30 October 2023. Available online: 31 October 2023.

https://csimq-journals.rtu.lv/
http://creativecommons.org/licenses/by/4.0
https://orcid.org/0000-0002-1678-9523

69

mobile applications, The Internet of Things (IoT), social media, manufacturing, marketing, and

more.

According to [1], low-code development can be viewed as a tool-based approach. However,

there are some software development and delivery peculiarities that distinguishes it from other

approaches [2]. To effectively implement low-code development in an organization and capitalize

on its potential advantages, it is relevant to identify principles, capabilities, and other factors that

impact the realization of low-code development’s potential. While the popularity of low-code

development is growing, the research on it is scattered, focusing on a limited number of

perspectives. The objective of the article is to summarize existing knowledge on low-code

development from multiple perspectives – used tools, applied development lifecycles, application

areas, potential benefits, and challenges and derive relevant development and delivery principles

that would be useful for utilizing existing knowledge in the application of low-code development

in companies and identifying areas of research for further enhancements in low-code development

methods and tools. The following research questions are addressed by the article:

• RQ1: What is low-code software development?

• RQ2: What are low-code development platforms?

• RQ3: What development lifecycles are described in the literature related to low-code

development?

• RQ4: What are the application areas of low-code development?

• RQ5: What are the benefits of low-code development?

• RQ6: What are the challenges of low-code development?

• RQ7: What are the low-code development principles?

To fulfill the objective and to answer the research question, a comprehensive literature review

on low-code development was conducted. The remainder of this article is structured as follows:

Section 2 describes the research method. Section 3 amalgamates the foundations and

characteristics of low-code development including its definition (Subsection 3.1), low-code

development platforms (Subsection 3.2), applied development lifecycles (Subsection 3.3),

applications areas (Subsection 3.4), low-code benefits (subsection 3.5), and challenges (subsection

3.6). Section 4 points to the main principles to be followed in the use of low-code approach.

Conclusions are provided in Section 5.

2 Methodology

A literature review serves as a valuable instrument for comprehending the existing knowledge

within a particular domain, enabling the identification of gaps and directions in which further

research is needed and it has been selected as the method for answering the research questions of

this article. [3]. The review was carried out following the methodologies outlined by Levy and

Ellis [3]. At the beginning, the understanding of the current status of the Body of Knowledge of

the topic was gained, and the research goals and research questions were established. Then

according to [3], the literature review process was executed consisting of three stages: (i) input,

(ii) processing, (iii) output. The “input” stage covers aspects of the search and identification of

high-quality literature, and the procedure for the collection of literature. During the “Processing”

stage the literature is comprehended, applied, analyzed, synthesized, and evaluated. At the

“Output” stage research findings are synthesized and these findings are articulated in the written

literature review [3].

First, a keyword search in scientific databases was conducted, using relevant keywords as

suggested by Levy and Ellis [3]. Afterward, a backward reference search was conducted [3]. In

this step, the references of the articles identified during the keyword search were reviewed.

The initial keyword search was carried out in scientific databases – IEEE Xplore Digital Library,

ACM Digital Library, ScienceDirect, and SpringerLink. The initial keyword-based search was

70

conducted in the last quarter of 2022. Additionally, other electronic resources, such as Scopus,

were utilized to access papers identified through the backward search method. Based on the

research questions, specific keywords were identified, and a search string was formulated. An

automatic search in databases was executed within the papers’ title, abstract, and keyword fields.

The obtained results were filtered to include only papers related to the information technology

domain while removing irrelevant content types (e.g., posters). The papers retrieved in the search

were validated against the selection criteria and any duplicate papers were eliminated. The

inclusion and exclusion criteria used for paper selection are described in Table 1.

Table 1. Inclusion and exclusion criteria of the articles

Selection No. Criteria

Inclusion I1 The article is related to low-code software development

Exclusion E1 The article is not published in English

E2 The full text of the article is not available

E3 The paper does not contain answers to any of the research questions

In the initial keyword search, database search engines retrieved a total of 281 papers that were

relevant to the topic of low-code development. The number of articles found in each library is

displayed in Table 2 in column “Number of results”.

Table 2. Number of results per scientific library

Database Number of results Selected studies

IEEE 133 20

ACM 61 12

ScienceDirect 63 2

SpringerLink 24 5

The obtained results were reviewed by applying the criteria defined in Table 1. Additionally, the

full text was examined for multiple papers to ensure their relevance and applicability to the paper.

Finally, a total of 39 articles were identified as relevant for the review from the keyword search

step. The number of selected studies in each library is displayed in Table 2 in column “Selected

studies”. Then the backward search process was conducted. The backward search process began

by searching for potential articles within the available resources. Afterward, inclusion and

exclusion criteria were applied. The backward search step added three papers to the literature list.

In total, 42 unique articles were selected from scientific databases for the literature review. The

distribution of the selected papers by year is visualized in Figure 1. The data shows that papers

concerning low-code development emerged in 2019, and there has been an increase in the number

of articles over the past two years. This trend indicates that the topic is relatively new.

In the article, to summarize, consolidate, and compare the gathered information related to the

defined research questions, the authors employed the research synthesis method known as thematic

synthesis. The thematic synthesis method is applied to identify explanations or patterns essential

to considered review questions through descriptive synthesis. This method involves identifying

recurring themes across multiple studies, interpreting, and explaining them, and at the end drawing

conclusions [4]. As proposed in [4] the process of thematic synthesis in software engineering

consists of five steps, among which the authors move iteratively. These steps are visually

represented in Figure 2. After selecting the relevant studies, the sources are read, and data are

extracted. Then descriptive labels – codes – are assigned to chunks of the text, taking into account

the context of the findings. Codes enable the organization and grouping of common data into

categories and initiate themes. In this review, the codes were developed using an integrated

approach that combines both inductive and deductive (“start list” of codes) development of codes.

Then these codes are translated into themes, which involves grouping them into smaller sets to

71

generate more meaningful units. These identified themes can then be explored and used to interpret

higher-order themes.

Figure 1. Number of selected papers by year (at the end of 2022)

Figure 2. Process of thematic synthesis (adapted from the description in [4])

The limitation of the structured literature review is related to subjectivity in literature selection,

interpretation, and synthesis leading to biases [3]. The limitations of the thematic synthesis are

related to subjective biases during data extraction and data coding, which can lead researchers to

perceive patterns based on their expectations rather than the actual content of the text. Another

concern is the risk of coding data at too general a level or out of context. Furthermore, the

trustworthiness of the synthesis depends on the quality of the studies used [4]. To some extent,

these biases were possible to overcome by involving researchers with different experience in low-

code development.

3 Foundation and Characteristics of Low-Code Development

This section provides an answer to the research questions about the definition of low-code

development, its lifecycle, as well as related characteristics and specifics.

3.1 Defining Low-Code Development (RQ1)

According to [5]–[8] the term “low-code” originates back to 2014 when it was defined in a

Forrester Research paper called “New Development Platforms Emerge For Customer-Facing

Applications” by Richardson C. et al. Since then, multiple definitions have been delivered in the

current research literature.

In [9] by Waszkowski R., the term “low-code programming technique” is used. The author

describes it as a derivate of fourth-generation programming (4GL) in combination with Rapid

72

Application Development (RAD) principles. The low-code programming technique allows

programmers and practitioners to develop applications by focusing on designing aesthetics and

functionality while reducing the effort required for coding [9].

In another paper, by Alamin et al. [10], low-code development is defined as a paradigm that

enables minimal hand-coding, the use of visual programming with a graphical interface, and

model-driven design for software development. Furthermore, the authors emphasize that low-code

software development embodies the principles of End User Software Programming by enabling

practitioners with diverse backgrounds and varying levels of software development experience to

engage in software development activities [10]. Although the provided definition focuses more on

the technical realization of low-code development, the paper establishes a connection between

Agile methodology and low-code software development. From this follows that it would be

important to respect development methodology principles when formulating a definition for low-

code development.

Somewhat similar aspects in defining low-code development are described by Luo et al. [11].

According to this paper, practitioners define low-code development as a process that involves

minimal coding effort, drag-and-drop capabilities, visual programming, the availability of pre-

designed templates, and development that is friendly to non-professional developers [11].

Similar definitions appear in other peer-reviewed papers as well – [1], [6], [7], [12]–[22].

Consequently, to capture the multifaceted nature of low-code development and to ensure

comprehensiveness, the following definition is proposed and used in this article: Low-code

software development is a development approach that enhances rapid, flexible, and iterative

software development by enabling quick business requirements translation through visual

programming with a graphical interface, visual abstraction, and minimal hand-coding; and

involving practitioners with various backgrounds and software development experience.

3.2 Low-Code Development Platforms (RQ2)

As indicated by the definitions provided above, low-code development is closely associated with

low-code development platforms (LCDPs). Therefore, it can be claimed that low-code

development is a tool-based approach [1]. LCDPs are platforms, as they include application

development, deployment, lifecycle, and platform management features [8]. These platforms are

cloud- (delivered through Platform-as-a-Service (PaaS) model) or on-premises-based platforms,

on which low-code development is accomplished using visual tools, predefined components, and

their customization and configuration [19], [23].

In general terms, a low-code platform is made of multiple layers and, from the architectural

perspective, according to [19], there can be distinguished the following layers:

• Application layer. This layer is made of a graphical environment that includes toolboxes and

widgets for user interface definition. It also includes mechanisms for authentication and

authorization. Platform users engage with this layer, utilizing its modeling constructs and

abstractions to develop applications and specify their behavior [19].

• Service integration layer. The role of this layer is to provide integration with and utilization of

various services, such as application programming interfaces (APIs) and authentication

mechanisms [19].

• Data integration layer. A layer dedicated to enabling integration, operation, and manipulation

of data that can come from various sources [19].

• Deployment layer. A layer that concerns the deployment of the developed application on a

dedicated cloud or on-premise environment. In collaboration with the service integration layer,

the containerization and orchestration of the developed application are performed [19].

There is a vast number of low-code development platforms currently available. The authors in

[14], based on Forrester Research paper called “Vendor Landscape: The Fractured, Fertile Terrain

73

of Low-Code Application Platforms” by Richardson C. and Rymer J.†, distinguished five major

segments: (i) General-purpose platforms, (ii) Process app platforms, (iii) Database app platforms,

(iv) Request handling platforms, and (v) Mobile app platforms. General-purpose platforms offer

various features for software development, including ones for user experience, database,

integration development, access control, deployment, and others. Process app platforms are used

to develop coordination and collaboration applications with the visual process and case-modeling

tools. Database app platforms specialize more in data management. Request-handling app

platforms are dedicated to the creation of request processing, handling, and tracking apps. Mobile

applications specialize in mobile app development with dedicated tools [14].

Low-code development platforms combine multiple traditional components and therefore

include multiple features – supported functionalities and services. However, differences of

supported functionalities among platforms exists. Various scientific literature sources [5], [13],

[19], [24], [25] have introduced feature diagrams and lists to compare the commonalities and

variabilities of platforms. However, by reviewing other peer-reviewed papers and applying the

thematic synthesis approach, additional features supported by platforms were identified. In this

article, these features are summarized and integrated with the feature lists introduced in the

previously mentioned sources. It is important to note that not all low-code development platforms

support all functionalities or address specific features to the same extent or in the same way. Thus,

the significant variability of supported LCDP features poses a challenge in defining a consistent

set of core features [5], [19], [24]. The obtained list of LCDP features is organized into two feature

levels and is represented in Table 3. Top-level features are shown in column 1, corresponding base-

level features are listed in column 2, and feature descriptions are given in column 3.

Table 3 Features supported by LCDP

Top-level

features
Features Description

Requirement

modeling

support

Requirement

management tools

Built-in functionality for requirements specification. Platforms

typically provide tools for requirements management, including

data collection, checklist creation, user stories, and the ability to

import them into sprint plans. This feature is important for

ensuring the correct implementation of requirements, as well as

for requirements traceability, and verification [10], [25]

Visual

development

tools

Visual designer

Visual modeling tool utilized to develop the software. Through it,

all aspects of the software are developed by selecting, arranging,

configuring, and connecting components [26], [27]

Drag and drop approach

A drag-and-drop or “point and click” feature allows developers to

create an app by simply grabbing and dragging the required

elements to their desired positions on the interface [19]

Integrated development

environment

A dedicated integrated development environment for developers

for a complete development lifecycle [27]

Forms

The feature includes dashboards, custom forms, surveys,

checklists, and more to enhance the user interface and user

experience of the developed application [19]

Advanced coding

components

A feature that allows achieving further customization to build an

extensive user interface and user experience, integrations, or

custom algorithms supporting various technologies [11], [19],

[24], [28]

† https://informationsecurity.report/Resources/Whitepapers/0eb07c59-b01c-4399-9022-

dfc297487060_Forrester%20Vendor%20Landscape%20The%20Fractured,%20Fertile%20Terrain.pdf

https://informationsecurity.report/Resources/Whitepapers/0eb07c59-b01c-4399-9022-dfc297487060_Forrester%20Vendor%20Landscape%20The%20Fractured,%20Fertile%20Terrain.pdf
https://informationsecurity.report/Resources/Whitepapers/0eb07c59-b01c-4399-9022-dfc297487060_Forrester%20Vendor%20Landscape%20The%20Fractured,%20Fertile%20Terrain.pdf

74

Table 3 Continued

Top-level

features
Features Description

Reusability

support

Predefined components
Pre-built components (various pallets of widgets, structures,

models, services, connectors, and other components), and

templates that are available for the development of applications

[19], [27], [29]–[31]
Predefined templates

Predefined configuration
A feature allowing to utilize the predefined configuration of

settings and solutions [1], [12]

Built-in workflows

A feature that provides a platform with predefined common

reusable workflows that can be used for application development

[19]

Pre-built

forms/reports/dashboards

Reusable set of common forms, reports, or dashboards available

for editing and use in development [19], [32]

Artifacts export

mechanisms

Mechanisms to export created models or generated artifacts for

future reuse [25]

Artifacts import

mechanisms

Mechanisms to import and reuse previously created or other

external artifacts [25]

Artifacts storage and

future reuse

Feature for management of inbuilt or previously developed

reusable artefacts locally or in cloud infrastructure [25]

Data source

specification

mechanisms

Data structure

specification

A component that enables data structure specification using a

conceptual modeling tool [5]

Internal databases A feature that allows data to be stored in the internal database [24]

External data sources
A capacity to access external data sources using various

mechanisms [24]

Data binding Feature for data binding mechanisms [32]

Interoperability

support

Connection with data

sources

A feature that supports the connection of application to various

data sources – relational databases, non-relational databases, or

files [19], [24]

Interoperability with

external services

A feature that provides functionality to incorporate various

external services, commonly through APIs [19], [24]

Business logic

specification

mechanisms

Business rules engine

A feature that allows for establishing the logic and executing

business rules helping to manage data according to requirements

[8], [19]

Graphical workflow

editor

A feature that enables visual-based specification of business rules,

where workflows are defined using graphical diagrams similar to

business process model and notation [6], [19]

AI-enabled business

logic

A feature that is learning attributes behavior and replicates it

conforming to artificial intelligence-based learning mechanisms

[19]

Development

automation

features

Automatic development

A feature that enables the automatic generation of applications (for

instance, automatically generating an application from a

spreadsheet) [9], [12]

Automation of low-level

details

A feature that automates low-level concerns in application

development, such as object-relational mapping, load balancing,

data integrity, query optimization, services, messaging,

authentication, and more [8], [19]

Collaborative

development

support

Online collaboration
Mechanisms for simultaneous work and collaboration by multiple

developers and conflict management at runtime [19]

Offline collaboration

Mechanisms that support multiple developers work locally in

offline mode and commit changes to the server in which changes

are merged [19]

75

Table 3 Continued

Top-level

features
Features Description

Artificial

intelligence (AI)

Internal artificial

intelligence components

A feature that enables internal components for the use of AI [24],

[32]

Integrability of external

artificial intelligence

services

A feature that enables the use of specialized APIs for AI services

[24]

Testing and

verification

support

Automated testing A feature for automated testing realization [12]

Integration with testing

platforms

Mechanisms to integrate external testing platforms for UI, API,

and End-to-End automated testing [12]

Requirements used in

testing
Functionality to map system requirements to the test cases [12]

Testing environment
A feature that covers inbuilt testing workbench, model checking,

and validation tools [25]

Deployment

support

Automatic deployment

support
A tool to automate the deployment of the application [1]

Deployment on a cloud
A feature that enables application deployment on a cloud

infrastructure [19]

Deployment on local

infrastructures

A feature that enables local application deployment on an

organization’s infrastructure [19]

Security support

Application security

A feature that enables such applications’ security mechanisms as

confidentiality, integrity, and availability through authentication

mechanisms, security protocols, and user access control [19]

Platform security
A feature that enables security and role management to ensure

confidentiality, integrity, and availability on a platform level [19]

Lifecycle-

management

features

Lifecycle-management

components

Features that enhance collaborative work employ task, document,

and requirement management as well as deployment, staging,

maintaining, and other functionalities. Integration with external

tools is also possible [10], [19], [22], [33]

Repositories
A feature that supports repository and version control tasks of

developed artifacts [19]

Analysis

environment

Analysis Features

Dashboards, monitors, alarms, and other performance and

measurement tools to gather statistics, identify code anti-patterns,

analyze the performance, and monitor CPU, memory, and other

components [1], [25], [34]

Advanced Reporting
A feature that enables application usage reporting in a tabular and

graphical way [19]

Extensibility

Easy to add modeling

features
Mechanisms to add new features [25]

Easy to modify the

existing features
Mechanisms to refine or extend developed functionality [11], [25]

Scalability

Scalability on the

number of users

Features to scale applications regarding the number of

manageable active users [19]

Scalability on data traffic Features to scale applications regarding the data traffic [19]

Scalability of data

storage
Features to scale applications regarding data storage [19]

Other features Developer Assistance
Mechanisms (for example, recommender systems) that assist

developers in the development process [7], [33]

76

3.3 Low-Code Development Lifecycle (RQ3)

To deliver software through a low-code approach, multiple software development steps need to be

performed. Any software development methodology can be applied for low-code development,

but organizations frequently use fast delivery practices [35].

Typical low-code software development stages are described in papers [10] and [19]. The

authors in [10] and [19] describe a low-code development approach consisting of seven phases to

develop applications using low-code development platforms:

1. Requirements and feasibility analysis.

2. Data modeling – the application’s data schema is defined and configured. This involves

establishing the structure of entities, defining their relationships, implementing constraints,

and identifying dependencies within the data model.

3. Definition of the user interface – in this phase, the application’s forms, pages, and views are

created and user roles and security mechanisms are configured.

4. Implementation of business logic and workflows – application workflows and business logic

are defined and configured.

5. Integration of external services – required integrations with third-party services are

established.

6. Testing and deployment.

7. Customer feedback and additional features – after application deployment, feedback from

stakeholders is received, and, if required, changes and additional features are defined, followed

by the subsequent cycle.

Multiple papers describe the use of Agile concepts within low-code development. According to

researchers, Agile methodology and low-code software development conform well [10], as it

promotes an iterative, frequent delivery approach with continuous stakeholder involvement. In the

literature, the use of various frameworks is described. For instance, the concepts of Extreme

Programming are applied [36]; the papers [19], [32] and [37] mention that low-code development

fits well with the use of Scrum and Kanban methods; the use of Lean software development

methodology is also proposed [38]. The relation between low-code development stages and Agile

methodology is offered by [10], introducing the following approach:

1. Requirements analysis – requirements regarding the developed software are identified, and

platform requirements management tools can be used.

2. Planning – analysis and planning of feasibility, schedule, interdependences, risks, and

complexities are performed.

3. Application design – based on the defined requirements, the design is specified and reviewed

by stakeholders considering architecture, modularity, and extensibility.

4. Application development – the application is being developed using low-code platform

features specifying user interface, business logic, integration, and other elements.

5. Testing – tests are performed to verify the implementation of requirements within the software

[12].

6. Deployment – the application is deployed either on-cloud or locally.

7. Maintenance – maintenance is provided once the application is released, and if functionality

should be extended, additional features can be added, or a new iteration can be initiated.

Multiple peer-reviewed sources have mentioned the utilization of RAD within the context of

low-code development (e.g., [9], [14], [20]). However, these papers did not elaborate on the

specifics of the development lifecycle steps associated with RAD in the context of low-code

development.

We can observe that, although the provided lifecycles differ in the naming of focus of several

phases, all approaches have a dedicated phase for requirements, testing, and after-deployment

activities. In our paper [39], the literature on life cycles has been amalgamated and the low-code

development lifecycle model is proposed. The model consists of seven low-code development

77

phases which are executed iteratively and are similar to the Agile development lifecycle phases:

ideation and requirement analysis, planning, application design, development, testing,

deployment, and maintenance [39].

3.4 Low-Code Development Application Areas (RQ4)

According to Bucaioni et al. [7], 21 application areas have been identified in peer-reviewed and

grey studies. The most common are web, mobile, enterprise services, business processes, and IoT.

Other areas include healthcare, education, databases, request handling, recommender systems,

manufacturing, industrial training, domain-specific language (DSL) engineering, social media,

process, marketing, desktop, blockchain, automotive, AI and aeronautics [7]. Additionally, the e-

commerce and Extract-Transform-Load applications are mentioned in the literature [11].

Based on the available sources, currently, there are no restrictions reported concerning any

application areas.

3.5 Benefits of Low-Code Development (RQ5)

There are various benefits identified in the peer-reviewed literature that businesses can gain from

low-code development. Identified benefits are amalgamated in Table 4 and described in the

following paragraphs.

Table 4. Identified low-code development benefits

ID Benefit Sources

BE1 Acceleration of the development cycle

[1], [5], [6], [10], [11], [13], [14],

[19], [26], [27], [29], [32], [35],

[40]–[42]

BE2 Involvement of citizen developers
[1], [5], [6], [10]–[12], [14], [19],

[26], [35], [38], [41]–[43]

BE3 Decreased costs
[1], [5], [6], [11], [14], [19], [27],

[32], [35], [40], [44]

BE4 Increased responsiveness to business and market demands [1], [5], [6], [10], [35], [36]

BE5 Lowered maintenance effort [5], [6], [10], [19], [36], [45]

BE6 Improved collaboration among the development team and business [11], [41]

BE7 Promoted digital innovation [6], [14]

BE8 Mitigation of shadow IT [6]

Low-code development allows full application delivery faster to face time constraints [14], [19].

This highlights the first low-code development benefit - acceleration of the development cycle

(BE1). One factor that contributes to this is the platforms' functionalities, which cover the entire

development process and speed it up by minimizing the need for manual coding, visual application

development, drag-and-drop capabilities, reusability, and automation [13], [27].

The benefits gained from the involvement of citizen developers (BE2) can be examined from

various perspectives. First, it helps to mitigate the problem related to the lack of developers as

citizen developers gain the opportunity to implement applications themselves or with the lower

involvement of IT professionals. Additionally, from this perspective, it also contributes to the first

benefit of providing an opportunity to deliver applications faster (BE1) [9]. Secondly, this

contributes positively to reducing misinterpretation of requirements as citizen developers come

from business backgrounds so that they can define and fulfill them precisely [10], [12].

Another advantage offered by low-code development is cost reduction (BE3). Cost savings are

achieved through several means – (i) reduction in coding time, as low-code development enables

faster application creation, (ii) promoting IT and business collaboration using the available

78

resources more effectively, (iii) reduction of maintenance costs, (iv) limiting the need to hire new

developers or outsource [5], [11], [32].

Business and market situation is dynamic and constantly changing, often with a tight timeline

and narrow market window. Therefore, low-code development can be beneficial as it increases

responsiveness to business and market demands (BE4). It can be realized due to its fast

development characteristics and user feedback enabling the realization of new opportunities and

meeting requirements [1], [36].

Low-code development lowers maintenance effort (BE5) by minimizing the occurrence of bugs

and integration-related issues due to the use of predefined components. Simultaneously, low-code

development supports the continuous evolution of requirements to ensure alignment between the

developed application and business needs. Therefore, more attention can be paid to innovation [6],

[36].

Another benefit of low-code development is improved collaboration among the development

team and businesses (BE6). Low-code development platforms and approaches promote frequent

collaboration between IT and business stakeholders throughout the entire development lifecycle.

Furthermore, it is easier to collaborate as understandable visual models can be used, and feedback

gathered. In such a way, the business side can directly contribute to the project and development

team to identify the right work to do [11], [22], [31].

Low-code development promotes digital innovation (BE7) by empowering such cultural aspects

as learning and experimentation, creativity, innovation, and fast time-to-market delivery.

Furthermore, digital innovation is enhanced through increased collaboration between IT and

business teams. This allows us to keep up with changing requirements by improving existing

solutions, validating ideas, or addressing new challenges to remain competitive [6], [14], [18].

Low-code software development provides tools administrated by the organization to non-IT

professionals. This approach reduces the risk of the rise of shadow IT (BE8), which is defined as

unsanctioned IT solutions and systems that are used without the approval of the organization's IT

department and therefore possess security, data governance, and other risks [6].

3.6 Challenges in Low-Code Development (RQ6)

Besides the potential benefit that can be obtained from low-code development, there are multiple

challenges to consider. These challenges have been addressed in our previous publication [23],

where 23 low-code development challenges were described, and their possible mitigation

approaches were overviewed according to the Agile development phases. The challenges are

depicted in Table 5.

Table 5. Challenges in low-code development adopted from [23]

Relation to Agile SDLC Challenge

Requirement Analysis Requirements specification; Changing requirements

Planning Selection of the platform; Vendor lock-in

Application Design
Extensibility limitations; Interoperability; Consideration of scalability; UI

design; Data storage design

Development
Implementation of business logic; Integration; No access to source code;

Customization of UI; Debugging

Testing
Limited testing and analysis support; Dependence on third-party testing

tools; Testing of non-functional requirements

Deployment Performance; Configuration issues; Accessibility issues; Version control

Maintenance Debugging; Use of maintenance features

79

4 Low-Code Development Principles (RQ7)

Besides using development platforms, low-code development usually includes changes in software

development and delivery principles. As the comprehensive list of low-code development

principles was not available, it was established based on knowledge obtained in the literature

review aiming at the list of principles that can help to realize identified low-code development

benefits (see Section 3.5). The principles were identified using the thematic synthesis qualitative

data analysis method [4]. They are described further in this section, and, for each principle, the

related works are listed to relate the principle to the sources that describe the ways the principle

can be implemented. The following principles were identified:

1. Select the right low-code platform.

2. Comprehend and master the platform.

3. Embrace visual application development and utilization of predefined components, elements,

and templates.

4. Enhance reusability.

5. Embrace platform automation capabilities.

6. Extend the functionality with additional customization when required.

7. Empower citizen developers and establish a fusion teams approach.

8. Promote IT-business collaboration.

9. Address the knowledge gap of citizen developers.

10. Establish governance.

11. Establish and follow an iterative development lifecycle.

12. Embrace the test-and-learn culture for innovation.

13. Support changing requirements.

Select the right low-code platform. Low-code development platform takes an important aspect

of the low-code development approach. As stated by [19] low-code development platforms can

help enterprises of any size, especially those with limited IT resources and budget, in scaling their

organizations efficiently and rapidly delivering feature-rich products at an optimal cost. Hence,

the selection of a platform should be approached thoroughly to avoid waste of time and resources

[1], [10]. Furthermore, while most low-code platforms can be considered general-purpose

platforms that support various use cases, there are also specific platforms for process apps,

database-related segments, request handling, mobile development, and even IoT [14], [25]. For

selecting the platform, the following suggestions are available in the literature:

• Use feature lists to facilitate comparison and selection. Such feature lists are presented in

Section 3.2 of this article and in [13], [19], [24], [25];

• Apply the intended scenarios and recognize the organization’s needs for platform selection

[11].

It is also important to consider the aspect of vendor lock-in when evaluating low-code platforms.

The paper [5] discusses that representations created among low-code platforms might not be

compatible raising the risk of investment protection and deadlock if the platform’s vendor stops

the support of the platform.

Comprehend and master the platform. A low-code development platform integrates various

traditional development components in a single environment and takes a significant role in low-

code development. Initial development on low-code development platforms is typically

straightforward and may not require formal training, but to release the full potential of the platform,

users should possess knowledge and understanding of utilizing the provided features. Having a

programming background can be advantageous in this context [5], [32], [35]. Hence,

comprehension of the platform will determine the development output.

Learning to start using the platforms can be easy, and it usually does not require training for

developers, and the effective way to become proficient is a learning-by-doing approach [16], [27],

80

[43]. Users should explore platform facilities and development environments that make the use of

the platform easy. It is essential to understand how to create integrations with external services and

different data sources using built-in connectors. Users should discover how to enhance integration

possibilities by configuring custom connectors. Finally, the work principles of workflow

definitions should be clear [19], [21], [27], [32]. Users should familiarize themselves with the use

of lifecycle management and collaboration facilities, requirement management tools, component

libraries, and repositories. Exploring the inbuilt testing facilities of the platform, understanding

their principles, and investigating the potential integration of external testing tools are also

important. Capabilities of cloud and on-premise deployment, as well as maintenance features,

should be revealed [6], [10], [12], [19], [27], [28].

Embrace visual application development and utilization of predefined components, elements,

and templates. Low-code platforms facilitate the delivery of applications through visual

development, minimizing the need for manual coding. Therefore, in order to achieve fast

application delivery without compromising quality, it is essential to effectively utilize visual

application development, predefined components, elements, and templates provided by the

platform [19], [27]. As presented by [36] and [27], such mechanisms allowed for delivering

projects on time, which would not be possible using traditional methods.

The platforms offer visual tools for developing applications, encompassing the interface, data

model, business logic, control and data flow, APIs, integration, and security model [27], [31].

Developers are provided with a visual environment that allows them to specify applications using

provided components and elements through visual modeling, drag-and-drop functionality, and

abstraction techniques. While there may be a need for some minor manual coding, for instance,

for configuration, the significant reduction in extensive manual hand-coding leads to an increased

pace of application delivery [12].

The use of predefined components, elements, and templates eliminates the need to create them

from scratch or customize them for every project, resulting in time savings. In addition, settings

configurations, for instance, component behavior, are also predefined [12], [28].

Additionally, maintenance, deployment, and other functionality, including scalability and

extensibility mechanisms, are provided through an easy-to-use visual environment, thus reducing

routine tasks and the effort for maintenance [19].

Provided mechanisms are non-professional developers-friendly and include assistance facilities

(for instance, recommender systems) to support them in development activities [11], [33].

Enhance reusability. Low-code development emphasizes the principle of reusability, and

platforms incorporate features to support it. Reusability allows for the efficient utilization of

previously created artifacts, leading to increased productivity, faster delivery speed, and reduced

maintenance effort [19], [24], [28]. Reuse principles are facilitated across various components,

ranging from setting up the data model to defining UI elements. Additionally, reusability is

supported during testing through reusable test data and cases. Furthermore, platforms offer

repositories and handle version control [12], [19].

Distributed architectures are common systems architecture, and the principles of reusability

promote that in low-code development. In such a way, the development, deployment, and

maintenance efforts are reduced [12], [19].

Embrace platform automation capabilities. Essential automation mechanisms are incorporated

into low-code development platforms, accelerating the application delivery process [1], [6].

Automation of low-code platforms is present throughout the whole lifecycle and can take care of

the following:

• Generate applications automatically (for instance, from spreadsheets) [12];

• Take care of low-level architectural details [19], [27];

• Deal with such technical aspects as authentication, load balancing, consistency of business

logic, integrity and security of the data, microservice creation, orchestration, and management

[19];

81

• Convert applications interface from design tools (for instance, Figma‡, InVision§) to a low-

code platform [28];

• Test case generations and configurations (using such mechanisms as “record and play”, UI

testing frameworks, and others). It can be done using inbuilt features or external tools [12],

[44];

• Transform an artifact into executable representation and generate code [19], [24], [38],

• Deploy application [5], [45];

• Scale and tune performance depending on the number of users [19];

Consequently, developers should take advantage of these automation opportunities whenever

possible, enhancing development speed.

Extend the functionality with additional customization when required. Various platforms allow

the extension of their user interface, flows, data services, connectors, and other functionality using

additional customization features. This further customization is achieved using technologies such

as HTML, CSS, JavaScript, Java, C#, Python, and others. Additional customization features enable

a higher degree of personalization and facilitate the implementation of advanced requirements.

However, developers should be careful with the implementation of advanced customization, and

it should be only applied when required and when it delivers additional value, as every additional

customization takes additional development time and increases the complexity of maintenance

[11], [19], [22], [24], [35].

Empower citizen developers and establish a fusion teams approach. Empowering people

(typically “business end-users”) with minimal or without software engineering experience and

merging with experienced IT professionals provides fast development and better alignment with

business or customer needs [5], [6], [25]. According to Microsoft** , such a formation can be

considered a fusion team – a group that merges business, analytics, and technology professionals.

Citizen developers are empowered to build apps quickly and are involved in other software

development lifecycle phases. Moreover, their knowledge of business promotes that needs are

addressed precisely [5], [15], [22]. Meanwhile, IT professionals deliver invaluable expertise in

various software development aspects (e.g., security and risks) and are pivotal in delivering more

advanced cases. They also ensure addressing non-functional and quality challenges [38], [46].

Additionally, architects and IT leaders are in charge of low-code development platform selection,

adoption, configuration, and customization [7]. The formation of such teams also ensures that

citizen developers can proactively turn for advice to more experienced colleagues [33].

Promote IT-business collaboration. The promotion of collaboration improves the understanding

of requirements and enhances the accuracy of their implementation by reducing the path of

requirements transfer [9], [10].

Both sides should be responsive, working within low-code development. Together fast

translation of business requirements and, also, their refinement into a functional application can

be achieved [10], [16]. Getting feedback faster and regularly is essential. It is important to engage

in continuous feedback gathering and refinement through quick iterations [31]. For this, the low-

code code nature of visual and quick development fits well, as such visual representation can

improve communication [17], [22].

Ultimately, the collaboration benefits both developers and the business. Developers can allocate

their resources to delivering the required functionalities, while the business receives precisely what

they require.

Address the knowledge gap of citizen developers. Citizen developers, as non-professional

developers from the business side with various backgrounds, might lack a background in software

development. The knowledge of software development best practices and platform features should

‡ https://www.figma.com/

§ https://www.invisionapp.com/
** Microsoft. What are fusion teams and development? Retrieved from https://powervirtualagents.microsoft.com/en-us/fusion-

teams-development/

https://www.figma.com/
https://www.invisionapp.com/
https://powervirtualagents.microsoft.com/en-us/fusion-teams-development/
https://powervirtualagents.microsoft.com/en-us/fusion-teams-development/

82

be gained to adopt low-code development successfully and ensure the professional growth of

citizen developers [19], [33]. To address the knowledge gap, appropriate training and learning-by-

doing might be required to become proficient in the platform [9], [19], [43].

Establish governance. While citizen developers prioritize fast application delivery, there is a

potential risk of neglecting security and other IT governance aspects. It is essential to take

proactive actions to prevent these concerns and ensure that proper security measures and IT

governance practices are in place [1], [46].

Establish and follow an iterative development lifecycle. Iterative and fast development

methodologies with regular releases, rapid prototyping or minimum viable product creation, and

continuous stakeholder involvement in gathering feedback are suggestable as this way,

acceleration of release time and adjustments can be gained.

As shown in Section 3.3, current sources describe low-code development in use with concepts

of Agile (Scrum, Kanban, Extreme Programming, Lean, DevOps) or Rapid Application

Development methodologies [1], [14], [19], [20], [36]–[38]. However, other methodology can also

be used for low-code development [35]. Nevertheless, the methodology’s key characteristics are

iterative manner, regular releases, prototype or minimum viable product creation, incrementally

growing product, and validation with a customer. Furthermore, typically development process

consists of multiple phases, and steps cover requirements analysis, planning, design, development,

testing, deployment, and maintenance activities [10], [14], [31], [32].

Embrace the test-and-learn culture for innovation. A culture that values experimentation

through test-and-learn approaches to enhance innovation is essential for business on the quick

market, business opportunity realization, and digital transformation acceleration. An organization

can leverage low-code development to facilitate the delivery of innovative ideas. However, these

ideas need to originate from the collaborative efforts between the business and IT departments.

The test-and-learn approach using low-code methods is well-suited for fast innovation [16], [18],

[29]. The test-and-learn approach prescribes that people should be open to generating ideas, and

their requirements (even if there is only perception about relevant features), building a minimum

viable product, testing in real-life scenarios, obtaining feedback, and deciding on further

continuation [6], [7], [18]. If business units are ready to develop their applications, timely adoption

of low-code development ensures tools for non-professionals and thus reduces the risk of “shadow

IT” [6], [18].

Support changing requirements. To retain customers and meet evolving business needs,

organizations must have the ability to respond to changing markets and business situations. Low-

code development, through agility, plays a crucial role in delivering this responsiveness.

Developers need to be open-minded and adapt to supporting changing requirements, allowing

organizations to quickly and effectively address market dynamics and meet business demands [5],

[29], [35]. Furthermore, it has been demonstrated in practice by [36] that low-code development

can deal with even daily requirements changes to provide a functional solution to accommodate

client’s needs and deliver a solution that meets their expectations.

The relations of identified low-code development principles and benefits and their

correspondence to relevant business objectives are demonstrated in the earlier publication [39];

where, also, capabilities to follow identified principles are stated and their relation to low-code

development lifecycle, low-code development platform, and other low-code development issues

are demonstrated.

Conclusion

The objective of the article was to summarize existing knowledge on low-code development from

multiple perspectives – used tools, applied development lifecycles, application areas, potential

benefits, challenges, and relevant development and delivery principles.

83

The article amalgamates in an organized way knowledge from research papers on low-code

development that had been published by the last quarter of 2022. With this, it helps other

researchers to get an insight into:

• Current understanding of the concept of low-code development,

• Currently employed low-code development lifecycles,

• Currently available features of low-code development platforms,

• Benefits and challenges of low-code development.

By leveraging the capabilities of low-code development platforms, organizations can achieve

acceleration of development, promote the involvement of citizen developers and collaboration

between IT and business, enhance innovations and responsiveness to changing market dynamics,

and lower costs, maintenance effort, and risks for shadow IT. However, it is essential to consider

various challenges and possible changes in software development and delivery principles.

Therefore, the article proposes how different aspects of low-code development can be organized

in low-code development principles. For instance, those are principles related to platform selection

and comprehension, embracing its full capabilities and features, promoting a culture of innovation,

and experimentation as well as empowering citizen developers, and enhancing business-IT

collaboration and iterative development lifecycle. These principles, as well as provided lists of

platform features and low-code development benefits and challenges, can be used as a reference

frame to suggest and evaluate new models, methods, and tools in low-code development areas.

Low-code development concept continues to grow in popularity and evolves, therefore

described characteristics might require revisioning in the future. Nevertheless, this article can serve

as a basis for further characterization of low-code development, expanding identified

characteristics with more specific details or practices.

References

[1] S. Rafi, M. A. Akbar, M. Sánchez-Gordón, and R. Colomo-Palacios, “DevOps Practitioners’ Perceptions of

the Low-code Trend,” Association for Computing Machinery (ACM), Sep. 2022, pp. 301–306. Available:

https://doi.org/10.1145/3544902.3546635

[2] C. Richardson and J. R. Rymer, “New Development Platforms Emerge for Customer-Facing Applications,”

2014. Available: https://www.forrester.com

[3] Y. Levy and T. J. Ellis, “A systems approach to conduct an effective literature review in support of information

systems research,” Inf Sci, vol. 9, pp. 181–211, 2006. Available: https://doi.org/10.28945/479

[4] D. S. Cruzes and T. Dybå, “Recommended steps for thematic synthesis in software engineering,” in

International Symposium on Empirical Software Engineering and Measurement, IEEE Computer Society,

2011, pp. 275–284. Available: https://doi.org/10.1109/esem.2011.36

[5] A. C. Bock and U. Frank, “Low-Code Platform,” Business and Information Systems Engineering, vol. 63, no.

6, pp. 733–740, Dec. 2021. Available: https://doi.org/10.1007/s12599-021-00726-8

[6] R. Sanchis, Ó. García-Perales, F. Fraile, and R. Poler, “Low-code as enabler of digital transformation in

manufacturing industry,” Applied Sciences (Switzerland), vol. 10, no. 1, Jan. 2020. Available:

https://doi.org/10.3390/app10010012

[7] A. Bucaioni, A. Cicchetti, and F. Ciccozzi, “Modelling in low-code development: a multi-vocal systematic

review,” Softw Syst Model, 2022. Available: https://doi.org/10.1007/s10270-021-00964-0

[8] D. Di Ruscio, D. Kolovos, J. de Lara, A. Pierantonio, M. Tisi, and M. Wimmer, “Low-code development and

model-driven engineering: Two sides of the same coin?” Softw Syst Model, vol. 21, no. 2, pp. 437–446, Apr.

2022. Available: https://doi.org/10.1007/s10270-021-00970-2

[9] R. Waszkowski, “Low-code platform for automating business processes in manufacturing,” in IFAC-

PapersOnLine, Elsevier B.V., 2019, pp. 376–381. Available: https://doi.org/10.1016/j.ifacol.2019.10.060

[10] M. A. Al Alamin, S. Malakar, G. Uddin, S. Afroz, T. Bin Haider, and A. Iqbal, “An empirical study of

developer discussions on low-code software development challenges,” in Proceedings - 2021 IEEE/ACM 18th

https://doi.org/10.1145/3544902.3546635
https://www.forrester.com/
https://doi.org/10.28945/479
https://doi.org/10.1109/esem.2011.36
https://doi.org/10.1007/s12599-021-00726-8
https://doi.org/10.3390/app10010012
https://doi.org/10.1007/s10270-021-00964-0
https://doi.org/10.1007/s10270-021-00970-2
https://doi.org/10.1016/j.ifacol.2019.10.060

84

International Conference on Mining Software Repositories, MSR 2021, Institute of Electrical and Electronics

Engineers Inc., May 2021, pp. 46–57. Available: https://doi.org/10.1109/MSR52588.2021.00018

[11] Y. Luo, P. Liang, C. Wang, M. Shahin, and J. Zhan, “Characteristics and challenges of low-code development:

The practitioners perspective,” in International Symposium on Empirical Software Engineering and

Measurement, IEEE Computer Society, Oct. 2021. Available: https://doi.org/10.1145/3475716.3475782

[12] F. Khorram, J. M. Mottu, and G. Sunyé, “Challenges & opportunities in low-code testing,” in Proceedings -

23rd ACM/IEEE International Conference on Model Driven Engineering Languages and Systems, MODELS-

C 2020 - Companion Proceedings, Association for Computing Machinery, Inc, Oct. 2020, pp. 490–499.

Available: https://doi.org/10.1145/3417990.3420204

[13] I. N. Oteyo, A. L. S. Pupo, J. Zaman, S. Kimani, W. De Meuter, and E. G. Boix, “Building smart agriculture

applications using low-code tools: The case for discopar,” in IEEE AFRICON Conference, Institute of

Electrical and Electronics Engineers Inc., Sep. 2021. Available:

https://doi.org/10.1109/AFRICON51333.2021.9570936

[14] C. Di Sipio, D. Di Ruscio, and P. T. Nguyen, “Democratizing the development of recommender systems by

means of low-code platforms,” in Proceedings - 23rd ACM/IEEE International Conference on Model Driven

Engineering Languages and Systems, MODELS-C 2020 - Companion Proceedings, Association for

Computing Machinery, Inc, Oct. 2020, pp. 471–479. Available: https://doi.org/10.1145/3417990.3420202

[15] A. Calçada and J. Bernardino, “Experimental Evaluation of Low Code development, Java Swing and

JavaScript programming,” Association for Computing Machinery (ACM), Aug. 2022, pp. 103–112. Available:

https://doi.org/10.1145/3548785.3548792

[16] P. M. Gomes and M. A. Brito, “Low-Code Development Platforms: A Descriptive Study,” in Iberian

Conference on Information Systems and Technologies, CISTI, IEEE Computer Society, 2022. Available:

https://doi.org/10.23919/CISTI54924.2022.9820354

[17] X. He, L. Tang, and Y. Liu, “MerGen: A Smart Code Merging Approach for Automatically Generated Code;

MerGen: A Smart Code Merging Approach for Automatically Generated Code,” 2022. Available:

https://doi.org/10.1109/COMPSACS54236.2022.00141

[18] V. Phalake, S. Joshi, K. Rade, and V. Phalke, “Modernized Application Development Using Optimized Low

Code Platform,” in 2022 2nd Asian Conference on Innovation in Technology (ASIANCON), IEEE, Aug. 2022,

pp. 1–4. Available: https://doi.org/10.1109/ASIANCON55314.2022.9908726

[19] A. Sahay, A. Indamutsa, D. Di Ruscio, and A. Pierantonio, “Supporting the understanding and comparison of

low-code development platforms,” in Proceedings - 46th Euromicro Conference on Software Engineering and

Advanced Applications, SEAA 2020, Institute of Electrical and Electronics Engineers Inc., Aug. 2020, pp.

171–178. Available: https://doi.org/10.1109/SEAA51224.2020.00036

[20] A. Jacinto, M. Lourenço, and C. Ferreira, “Test mocks for low-code applications built with OutSystems,” in

Proceedings - 23rd ACM/IEEE International Conference on Model Driven Engineering Languages and

Systems, MODELS-C 2020 - Companion Proceedings, Association for Computing Machinery, Inc, Oct. 2020,

pp. 530–534. Available: https://doi.org/10.1145/3417990.3420209

[21] A. Sahay, D. Di Ruscio, and A. Pierantonio, “Understanding the role of model transformation compositions

in low-code development platforms,” in Proceedings - 23rd ACM/IEEE International Conference on Model

Driven Engineering Languages and Systems, MODELS-C 2020 - Companion Proceedings, Association for

Computing Machinery, Inc, Oct. 2020, pp. 431–435. Available: https://doi.org/10.1145/3417990.3420197

[22] F. Gurcan and G. Taentzer, “Using Microsoft PowerApps, Mendix and OutSystems in Two Development

Scenarios: An Experience Report,” in Companion Proceedings - 24th International Conference on Model-

Driven Engineering Languages and Systems, MODELS-C 2021, Institute of Electrical and Electronics

Engineers Inc., 2021, pp. 67–72. Available: https://doi.org/10.1109/MODELS-C53483.2021.00017

[23] K. Rokis and M. Kirikova, “Challenges of Low-Code/No-Code Software Development: A Literature Review,”

in Perspectives in Business Informatics Research. BIR 2022. Lecture Notes in Business Information

Processing, E. Nazaruka, K. Sandkuhl, and U. Seigerroth, Eds., Springer, Cham, 2022. Available:

https://doi.org/10.1007/978-3-031-16947-2_1

[24] A. C. Bock and U. Frank, “In Search of the Essence of Low-Code: An Exploratory Study of Seven

Development Platforms,” in Companion Proceedings - 24th International Conference on Model-Driven

Engineering Languages and Systems, MODELS-C 2021, Institute of Electrical and Electronics Engineers Inc.,

2021, pp. 57–66. Available: https://doi.org/10.1109/MODELS-C53483.2021.00016

https://doi.org/10.1109/MSR52588.2021.00018
https://doi.org/10.1145/3475716.3475782
https://doi.org/10.1145/3417990.3420204
https://doi.org/10.1109/AFRICON51333.2021.9570936
https://doi.org/10.1145/3417990.3420202
https://doi.org/10.1145/3548785.3548792
https://doi.org/10.23919/CISTI54924.2022.9820354
https://doi.org/10.1109/COMPSACS54236.2022.00141
https://doi.org/10.1109/ASIANCON55314.2022.9908726
https://doi.org/10.1109/SEAA51224.2020.00036
https://doi.org/10.1145/3417990.3420209
https://doi.org/10.1145/3417990.3420197
https://doi.org/10.1109/MODELS-C53483.2021.00017
https://doi.org/10.1007/978-3-031-16947-2_1
https://doi.org/10.1109/MODELS-C53483.2021.00016

85

[25] F. Ihirwe, D. Di Ruscio, S. Mazzini, P. Pierini, and A. Pierantonio, “Low-code engineering for internet of

things: A state of research,” in Proceedings - 23rd ACM/IEEE International Conference on Model Driven

Engineering Languages and Systems, MODELS-C 2020 - Companion Proceedings, Association for

Computing Machinery, Inc, Oct. 2020, pp. 522–529. Available: https://doi.org/10.1145/3417990.3420208

[26] T. C. Lethbridge, “Low-Code Is Often High-Code, So We Must Design Low-Code Platforms to Enable Proper

Software Engineering,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), Springer Science and Business Media Deutschland GmbH,

2021, pp. 202–212. Available: https://doi.org/10.1007/978-3-030-89159-6_14

[27] R. Martins, F. Caldeira, F. Sa, M. Abbasi, and P. Martins, “An overview on how to develop a low-

codeapplication using OutSystems,” in 2020 International Conference on Smart Technologies in Computing,

Electrical and Electronics (ICSTCEE), 2020.

[28] M. Bexiga, S. Garbatov, and J. C. Seco, “Closing the gap between designers and developers in a low code

ecosystem,” in Proceedings - 23rd ACM/IEEE International Conference on Model Driven Engineering

Languages and Systems, MODELS-C 2020 - Companion Proceedings, Association for Computing Machinery,

Inc, Oct. 2020, pp. 413–422. Available: https://doi.org/10.1145/3417990.3420195

[29] N. Krishnaraj, R. Vidhya, R. Shankar, and N. Shruthi, “Comparative Study on Various Low Code Business

Process Management Platforms,” in 5th International Conference on Inventive Computation Technologies,

ICICT 2022 - Proceedings, Institute of Electrical and Electronics Engineers Inc., 2022, pp. 591–596.

Available: https://doi.org/10.1109/ICICT54344.2022.9850581

[30] J. Pacheco, S. Garbatov, and M. Goulao, “Improving Collaboration Efficiency Between UX/UI Designers and

Developers in a Low-Code Platform,” in Companion Proceedings - 24th International Conference on Model-

Driven Engineering Languages and Systems, MODELS-C 2021, Institute of Electrical and Electronics

Engineers Inc., 2021, pp. 138–147. Available: https://doi.org/10.1109/MODELS-C53483.2021.00025

[31] S. Saay and T. Margaria, “Model-Driven-Design of NREn Bridging Application: Case Study AfgREN,” in

Proceedings - 2020 IEEE 44th Annual Computers, Software, and Applications Conference, COMPSAC 2020,

Institute of Electrical and Electronics Engineers Inc., Jul. 2020, pp. 1522–1527. Available:

https://doi.org/10.1109/COMPSAC48688.2020.00-39

[32] R. Arora, N. Ghosh, and T. Mondal, “Sagitec Software Studio (S3) - A Low Code Application Development

Platform,” in 2020 International Conference on Industry 4.0 Technology, I4Tech 2020, Institute of Electrical

and Electronics Engineers Inc., Feb. 2020, pp. 13–17. Available:

https://doi.org/10.1109/I4Tech48345.2020.9102703

[33] L. Almonte, I. Cantador, E. Guerra, and J. De Lara, “Towards automating the construction of recommender

systems for low-code development platforms,” in Proceedings - 23rd ACM/IEEE International Conference

on Model Driven Engineering Languages and Systems, MODELS-C 2020 - Companion Proceedings,

Association for Computing Machinery, Inc, Oct. 2020, pp. 451–460. Available:

https://doi.org/10.1145/3417990.3420200

[34] I. P. Fernandes, M. Terra-Neves, and J. C. Seco, “Automated Refactoring of Unbounded Queries in Software

Automation Platforms,” in Companion Proceedings - 24th International Conference on Model-Driven

Engineering Languages and Systems, MODELS-C 2021, Institute of Electrical and Electronics Engineers Inc.,

2021, pp. 417–426. Available: https://doi.org/10.1109/MODELS-C53483.2021.00065

[35] M. A. A. da Cruz, H. T. L. de Paula, B. P. G. Caputo, S. B. Mafra, P. Lorenz, and J. J. P. C. Rodrigues, “Olp—

a restful open low-code platform,” Future Internet, vol. 13, no. 10, Oct. 2021. Available:

https://doi.org/10.3390/fi13100249

[36] J. Varajão, “Software Development in Disruptive Times,” Commun ACM, vol. 64, no. 10, pp. 32–35, 2021.

[37] N. Jesse, “Agility eats legacy-the long good-bye,” in IFAC-PapersOnLine, Elsevier B.V., Nov. 2019, pp. 154–

158. Available: https://doi.org/10.1016/j.ifacol.2019.12.464

[38] Y. Wang, Y. Feng, M. Zhang, and P. Sun, “The Necessity of Low-code Engineering for Industrial Software

Development: A Case Study and Reflections,” in Proceedings - 2021 IEEE International Symposium on

Software Reliability Engineering Workshops, ISSREW 2021, Institute of Electrical and Electronics Engineers

Inc., 2021, pp. 415–420. Available: https://doi.org/10.1109/ISSREW53611.2021.00112

[39] K. Rokis and M. Kirikova, “An ArchiMate-Based Thematic Knowledge Graph for Low-Code Software

Development Domain,” 2023, pp. 465–476. Available: https://doi.org/10.1007/978-3-031-42941-5_40

[40] W. Nurharjadmo, M. A. Khadija, and T. Wahyuning, “Modern No Code Software Development Android

Inventory System for Micro, Small and Medium Enterprises,” in Proceedings - 2022 IEEE International

https://doi.org/10.1145/3417990.3420208
https://doi.org/10.1007/978-3-030-89159-6_14
https://doi.org/10.1145/3417990.3420195
https://doi.org/10.1109/ICICT54344.2022.9850581
https://doi.org/10.1109/MODELS-C53483.2021.00025
https://doi.org/10.1109/COMPSAC48688.2020.00-39
https://doi.org/10.1109/I4Tech48345.2020.9102703
https://doi.org/10.1145/3417990.3420200
https://doi.org/10.1109/MODELS-C53483.2021.00065
https://doi.org/10.3390/fi13100249
https://doi.org/10.1016/j.ifacol.2019.12.464
https://doi.org/10.1109/ISSREW53611.2021.00112
https://doi.org/10.1007/978-3-031-42941-5_40

86

Conference on Cybernetics and Computational Intelligence, CyberneticsCom 2022, Institute of Electrical and

Electronics Engineers Inc., 2022, pp. 191–195. Available:

https://doi.org/10.1109/CyberneticsCom55287.2022.9865265

[41] C. V. K. Iyer et al., “Trinity: A No-Code AI platform for complex spatial datasets,” in Proceedings of the 4th

ACM SIGSPATIAL International Workshop on AI for Geographic Knowledge Discovery, GeoAI 2021,

Association for Computing Machinery, Inc, Nov. 2021, pp. 33–42. Available:

https://doi.org/10.1145/3486635.3491072

[42] S. Sinha et al., “Auto-generation of domain-specific systems: Cloud-hosted devops for business,” in IEEE

International Conference on Cloud Computing, CLOUD, IEEE Computer Society, Oct. 2020, pp. 219–228.

Available: https://doi.org/10.1109/CLOUD49709.2020.00041

[43] A. Bucchiarone et al., “What is the future of modeling?” IEEE Softw, vol. 38, no. 2, pp. 119–127, Mar. 2021.

Available: https://doi.org/10.1109/MS.2020.3041522

[44] K. Schneid, L. Stapper, S. Thone, and H. Kuchen, “Automated Regression Tests: A No-Code Approach for

BPMN-based Process-Driven Applications,” in Proceedings - 2021 IEEE 25th International Enterprise

Distributed Object Computing Conference, EDOC 2021, Institute of Electrical and Electronics Engineers Inc.,

2021, pp. 31–40. Available: https://doi.org/10.1109/EDOC52215.2021.00014

[45] G. Daniel, J. Cabot, L. Deruelle, and M. Derras, “Xatkit: A Multimodal Low-Code Chatbot Development

Framework,” IEEE Access, vol. 8, pp. 15332–15346, 2020. Available:

https://doi.org/10.1109/aCCESS.2020.2966919

[46] G. Hurlburt, “Low-Code, No-Code, What’s under the Hood?” IT Professional, vol. 23, no. 6. IEEE Computer

Society, pp. 4–7, 2021. Available: https://doi.org/10.1109/MITP.2021.3123415

https://doi.org/10.1109/CyberneticsCom55287.2022.9865265
https://doi.org/10.1145/3486635.3491072
https://doi.org/10.1109/CLOUD49709.2020.00041
https://doi.org/10.1109/MS.2020.3041522
https://doi.org/10.1109/EDOC52215.2021.00014
https://doi.org/10.1109/aCCESS.2020.2966919
https://doi.org/10.1109/MITP.2021.3123415

