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Abstract. Nowadays, there is an increasing need to rapidly build more realistic models 

to solve environmental problems in an interdisciplinary context. In particular, agent-

based and spatial modeling have proven to be useful for understanding land use and 

land cover change processes. Both approaches include simulation platforms often used 

in several research domains to develop models explaining and analyzing complex 

phenomena. Domain experts generally use an ad hoc approach for model development, 

which relies on a code-and-fix life cycle, going from a prototype model through 

progressive refinement. This adaptive approach does not capture systematically actors’ 

knowledge and their interactions with the environment. The development and 

maintenance of resulting models become cumbersome and time-consuming. In this 

article, we propose an actor and architecture-driven approach that relies on relevant 

existing methods and satisfies the needs of spatially explicit agent-based modeling and 

implementation. We have designed an Agent Global Experiment framework 

incorporating a meta-model built from actor, agent architecture, and spatial concepts to 

produce an initial model from specifications provided by domain experts and system 

analysts. An engine is built as a tool to support model transformation. Domain 

knowledge including spatial specifications is summarized in a class diagram which is 

later transformed into the agent-based model. Finally, the XML file representing the 

model produced is used as input in the transformation process leading to code. This 

approach is illustrated on a hunting and population dynamic model to generate a 

running code for GAMA, an agent-based and spatially explicit simulation platform. 

Keywords: Agent-Based Model, Methodology, Actor, Spatial Attribute, Metamodel, 

Model Specification, Land Use Modeling. 

1 Introduction 

Irrespective of the field of study, a model is an abstract representation of the reality observed, 

scaled down, and converted to a form that is easy to understand. It is also a spatio-temporal 
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reference for our understanding of a system [1]. Agent-based models (ABM) and spatial models 

in Geographic Information System (GIS) have proven to be useful tools for land use change 

processes analysis as they provide a framework to build models and conduct simulations. On the 

one hand, GIS is a set of computer-based infrastructure, human resources, procedures, and 

standards for the management of geographical information to address a specific issue [2]. GIS-

based models are composed of spatial entities including points, lines polygons, or pixels. On the 

other hand, ABM allows to define the behavior of agents in a common environment for solving 

complex problems. It is also used to model a distributed computing system with autonomous 

interacting agents that coordinate their actions to achieve their goal(s) jointly or competitively 

[3]. There are obvious similarities between agents and objects which usually prompt the designer 

of an ABM to rely on Unified Modeling Language formalism [4]. Both spatial and agent-based 

approaches include computer simulation platforms often used in several research fields 

(economics, ecology, sociology, geography, etc.) to develop models for explaining and analyzing 

complex phenomena [5], [6]. 

Several authors including [7]–[10] have proposed such models to understand the drivers of 

land use change and identify appropriate actions to maintain the target system. In 

interdisciplinary contexts and participatory modeling situations, there is an increasing need to 

rapidly build more realistic or effective models to solve environmental problems. A key idea to 

achieve this is to rely on field knowledge to mimic the attributes and behavior of the entities 

involved. Different research directions are investigated to increase the realism of the simulated 

environment. The first group of notable efforts oriented toward the integration of GIS and agent-

based models can be seen in [11], [12]. Other efforts are oriented toward proposing appropriate 

agent architecture. In this regard, exploring the concepts of the actor paradigm to build effective 

and valid agent is a promising research pathway [13], [14]. In addition to computer and 

mathematical modeling (e.g. using ordinary differential equations [15]), agent design can rely on 

economic, social, and anthropological models [16]. 

The challenge of our research endeavor is to combine actor paradigm, agent architecture, and 

spatial concepts to develop effective models for addressing key environmental problems. The ad 

hoc approach is often used for model development, which relies on a code-and-fix life cycle, 

going from a prototype model through progressive refinement. However, this adaptive approach 

does not capture systematically actors’ knowledge and their interactions with the environment. 

Technically, the development and maintenance of resulting models become cumbersome and 

time-consuming. From these facts, the actor paradigm appears to be a promising research focus  

in ABM as it links actor concepts to those of an agent and therefore improves the realism and 

validity of each model built. Moreover, to cope with a world evolving toward more applied 

artificial intelligence (AI), we need a more efficient and simple approach as close as possible to 

fields actors and appropriate for non-computer scientists that allows to capture the reality, data, 

and behavior shared within an interdisciplinary community and then, an efficient modeling 

technique to produce valid ABM simulations. In this article, we propose an actor-oriented and 

architecture-driven approach called Spatially Explicit Agent-based Modeling Approach 

(SEAMA) which relies on relevant existing methods and satisfies the need to design and build 

spatially explicit agent-based models that adequately mimic reality. We have designed an Agent 

Global Experiment (AGE) framework incorporating a meta-model built from actor, agent, and 

spatial concepts to produce an initial model from specifications provided by domain experts and 

system analysts. 

This article is organized as follows. Section 2 deals with the state of the art on land use 

modeling with a focus on agent-based and spatial approaches. Section 3 presents the conceptual 

and theoretical framework undergirding the contribution made in this article. Section 4 describes 

our modeling approach with an emphasis on the meta-model and the transformation mechanism. 

Section 5 illustrates and discusses the application and validation of the methodology on a case 

study, while Section 6 is devoted to conclusion and prospects. 
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2 Agent-Based and Spatial Modeling for Social Side in Land Use 

To justify and contextualize our contribution, this section formulates the land use change 

problem while highlighting and explaining associated concepts. It subsequently presents some 

major works in agent-based and spatial modeling addressing land use issues. 

2.1 The Land Use Change Problem 

Land use describes the economic and social functions of land or the purposes for which humans 

exploit it. The associated concept of land cover refers to the characteristics of the physical 

surface of the land (e.g. built-up area, vegetation, bare soil, forest) [17]. Land cover change is 

defined as the alteration process of land including, for instance, the loss of natural areas, 

particularly change from forest to urban area or transformation from agricultural to urban areas 

[18]. Land use change is a process in which human actors employ natural resources including 

forests, water, or agricultural land for their well-being. This process can lead to land cover 

changes including the modification or disappearance of biophysical entities at the land surface. 

Over the last decades, many research works have highlighted the complexity of land use/cover 

change. The magnitude of land use change varies with the time and geographical area being 

examined. The underlying processes are driven by a variety of forces that relate differently to 

one another in different spatial and temporal settings. In general, it is the human agency that 

brings about land changes and which is responsible for their magnitude and severity. Land use 

change is involved to a greater or lesser extent in most global environmental problems like 

urbanization, desertification, climate change, biodiversity loss, etc. The impacts of these changes 

are reaching threatening proportions with food security, health, and safety at stake [19]. W. de 

Groot [16] has proposed a methodological and interdisciplinary framework (Problem in Context 

also called PiC) for the explanation, analysis, and design of a solution to environmental 

problems. The land use change problem represented by PiC is the discrepancy between the chain 

of environmental effects of the underlying activities and the chain of associated environmental 

norms (Figure 1). 

 

Figure 1. Land use problem representation in the PiC framework 

Figure 1 allows the conceptualization of any activity behind a land use change problem in four 

directions. The social and physical causes on one side provide the problem explanation while the 

chains of environmental effects and norms provide the problem analysis, leading to the design of 
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effective solutions. Actor-in-Context (AiC) sub-framework focuses on the social context of the 

activity by presenting all related actors, target groups/communities, and their policy options and 

generates interactions per group. Actors are all social entities (be it a farmer, a wood merchant, 

an authority, etc.) acting individually or collectively and carrying out or influencing the 

problematic activity. PiC allows to present the behavior of actors in several levels, and shows the 

links between actors, their activities, facts/norms, and the impacts of those ones on their 

environment. The example of the use of the framework is demonstrated in [9] to describe an 

environmental problem well detailed in [13]. 

2.2 Land Use Change Modeling Approaches 

The study of land use change can target a very broad range of purposes including the description, 

explanation, prediction, impact assessment, prescription, and evaluation. A broad set of theories 

was developed, that allows us to explain the structure of the changes in the land use; why they 

occur, what are their causes, and what are the underlying mechanisms [17]. Each theory focuses 

on particular aspects of the subject with a different mode of theorizing including assumptions, 

type of land use and their determinants, the proposed mechanism of land use change, the 

reference spatial scale, and its temporal dimension. Existing theories can be grouped into the 

following three major categories of approaches that are applied to study the problems occurring 

in the land system: 

• The urban and regional categories led by micro/macro-economic theoretical approaches, 

• The sociological and political economics category in which behaviorist and institutionalist 

approaches are applied, 

• The actor-environment category with natural and social sciences-based theories designed in 

human ecological and planning studies. 

The three generic approaches usually adopted for the study of land use change, also called 

perspectives of understanding, include the narrative, the agent-based, and the systems approach. 

The narrative perspective provides an empirical and interpretative baseline by which to assess 

the validity and accuracy of the other visions. Both agent-based and systems approaches depend 

on explicit model development and empirical testing.  

The literature on land use change suggests several model classification schemes depending on 

substantive, design, and methodological criteria. A well-known classification covering the 

majority of models of land use change distinguishes the following four main categories: 

statistical and econometric models (e.g. linear regression [20]), spatial interaction models (e.g. 

Gravity [21]) optimization models (e.g. linear and dynamic programming [21]) and integrated 

models (see [22] on the features of integration). However, there are several other modeling 

approaches including landscape ecology, Markov chain, and GIS-based approaches which do not 

fit in this classification and cannot constitute a separate category. The authors of [23] summarize 

the lessons learned from a collaborating cross-case comparison of 13 models as 9 challenges 

grouped under three major themes including mapping, modeling, and learning. 

The difficulties faced in building truly dynamic models are not only technical but theoretical 

as well. The linkage between theories, models, and operational decision support tools for land 

use has not been strong over time in general. Whether and to what extent the use of models has 

improved decision-making on land issues is a question that cannot be answered satisfactorily. A 

central research requirement is that of producing coherent methodologies for integrating the 

various pieces of knowledge and building more realistic models to guide land use towards 

sustainable paths. 

The development of effective land use simulation models should be based on an appropriate 

methodology taking into account actors and spatial aspects as highlighted from key challenges in 

the current review. The authors of [24] describe some of these challenges facing the development 

of spatial ABM as methodological and suggest potential solutions from an interdisciplinary 
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perspective. The key issue in this case concerns the model efficiency and ease of use, 

cooperation of stakeholders in model design, and automatic model generation. Several agent-

based methodologies and strategies are inspired by object-oriented software engineering 

methods. Methods such as ADELFE (Atelier de Développement de Logiciels à Fonctionnalité 

Emergente [25]) and INGENIAS (Engineering for Software Agents [26]) include steps and 

specific concepts of Unified Process (UP) [27]. PASSI (Process for Agent Societies 

Specification and Implementation [28]) and ASPECS (Agent-oriented Software Process for 

Engineering Complex Systems [29]) are methods following an incremental process like UP. A 

major drawback of most of these methods is the fact that they do not propose a process that goes 

all the way through to deployment, except for PASSI or INGENIAS, which cover the entire 

development cycle. Gaia (that has been the first complete methodology for the analysis and 

design of multiagent systems [3], [30]) only covers a part of the UP life cycle, namely, the 

requirements analysis and design. Prometheus and MaSE (Multi-agent Systems Engineering 

[29], [31]) also do not address all the parts of the UP cycle. Finally, Tropos is an agent-oriented 

software engineering methodology driven by requirements and focuses on the agent concept. In 

that methodology, the agent is a key concept and the development process is driven by 

requirement analysis where the agent and their dependencies are expressed in a meta-model as 

primitives [32]. Thus, agents’ goals, beliefs, and capabilities are specified in detail, along with 

the interaction between them. 

The challenge of coupling agents and spatial concepts in modeling is addressed by [11] that 

has identified four major alternative strategies to implement the conceptual linkages between 

GIS and ABM as presented in Figure 2. 

 

Figure 2. Relationships between agent and spatial entities (adapted from [11]) 

The loose coupling considers GIS and ABM as two different software entities where the 

identity relationships are built as in Figure 2.a; The intermediate or moderate coupling 

encapsulates techniques between loose and tight/close coupling [33]. For illustration, in 

Figure 2.c the processes can be directly implemented in the spatial side. The tight or close 

coupling is characterized by the simultaneous operation of systems allowing direct inter-system 

communication during the program execution [34]. Figure 2.b shows the agent-agent and agent-

spatial entity interactions. Cooperative coupling is another broad approach that requires only the 

linking of existing systems, rather than building a new one. This approach is centered on neither 

ABM nor GIS but makes use of the functionality available in both environments to build an 

integrated system. An alternative to coupling is to integrate the required functionality of either 

the GIS or simulation/modeling system within the dominant system using its programming 

language to link both as in Figure 2.d [35]. Many simulation tools implement the last one and 

help us to produce a methodology for spatially explicit modeling. For instance, [36] proposes a 



21 

 

model for simulating the spatial organization of hunting and animal population dynamics. The 

work in [12] highlights the effectiveness of coupling actor and spatial features in a model 

simulating urban development. The authors of [37] present the technical aspect of coupling using 

the GAMA platform to integrate the GIS data for simulation. The authors of [38] use an ABM-

centric approach to integrate spatial data to simulate households and economic activities in an 

urban area. 

In the same perspective, the authors of [8] present an integrated spatial model to simulate the 

competition between land use types taking into account a set of biophysical, socio-demographic 

and geo-economic driving factors. In their prospective conclusion, the coupling of agent- and 

GIS-based approaches is recommended as a solution to model the individual decision-making 

processes and their interaction with the spatial entities as early mentioned by [39]. In ABM 

research, individual decision-making is driven by agent architecture, a philosophic pattern well-

argued, studied, and discussed early by [40] and followed by [41] that introduced Belief-Desire-

Intention (BDI) which is a practical reasoning type of architecture. Several extensions of BDI 

were proposed later. The works [14] and [42] also provide details of modeling with BDI 

architecture and the subsequent implementation [43]. They highlight the usability aspect of the 

platform and its spatial components.  

Following the methodological and actor-centric research line previously presented, recent 

work on agent-based modeling of land use is presented in [13] (initial version available in [44]). 

They address the issue of land use model validity using an actor-centric meta-modeling approach 

whereby actors in the field, domain experts and ICT specialists are involved in the participatory 

modeling activity and consequently the production of tools in context. The key idea is to design 

and maintain a certain consistency in the transformation from actor to agent during model 

building relying on associated concepts and technologies. At the requirement level, the observed 

system is described in pseudo-codes using the Object Role Modeling (ORM) language †  to 

represent interactions between actors as early expressed in the AiC meta-model. However, the 

model and code transformation process is still cumbersome and time-consuming. Moreover, this 

initial study focuses only on the actors’ field (multilevel analysis) and remains silent on the 

biophysical and environmental impact branches of the general PiC framework. In this article, we 

investigate a methodology for improving this approach in producing more realistic models 

through a deeper analysis of the actor options, motivations, and full expression of the spatial 

aspects from both actor reasoning and the biophysical environment. 

3 Conceptual Framework 

This section introduces and explains how the AiC framework, agent architecture concepts, and 

Model Driven Architecture (MDA) process are used to model the properties, activities, and 

interactions of actors and the subsequent model transformations. 

3.1 Actor and Agent Modeling 

Figure 3 provides a representation of the key concepts of AiC framework, and BDI architecture 

respectively, with actor and agent at the core. This prompts the designer to potential 

transformation rules linking the actor and the agent. 

At the analytical and conceptual level, an AiC model depicts a given action performed by an 

actor in an environment and leading to land use changes or problems. This actor acts as it does as 

a result of a choice between alternative plans/actions depending on its options, motivations, and 

goals. The selected choice is also constrained by its resource capital. These detailed 

specifications represent the actor field which depends on any system, actor, or community 

(logging company, government, market, etc.) producing an influence on the actor’s behavior. 

 
† http://www.orm.net/ 

http://www.orm.net/
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They represent the main building blocks of the actor’s decision-making apparatus. Each causal 

linkage identified during problem analysis and explanation is relevant and therefore used to 

generate one or more potential plans to be executed by the actor, hence affecting their 

environment. This actor’s faculty to combine selected options to form a plan represents a way to 

design a local solution hence participating in the whole solution. Then, Actor perceives the 

physical environment including both others actors and biophysical entities. The options and 

motivations toward a problematic action determine his structures and culture as well as 

influences from other actors represented in the actor’s field. The resulting action impacts the 

physical environment through a chain of cause and effect relationship from this physical 

environment features to the final impacting variables. 

 

Figure 3. Representation of AiC framework and BDI architecture concepts 

At the logical level, the agent concept is used to model and simulate the actor’s abilities and 

reasoning pattern in a virtual environment. An agent is defined as a function Ag in a given 

environment Env = (E, e0, τ) as follows. Ag: RE
 → Ac, where (Ac = a1, a2, a3, ... ). is a set of 

possible actions that the agent can perform, E is a set of states including the initial state e0 and RE
 

is the set of possible runs. A run is a sequence (e0, a1, e2, a3, etc.) that carries the history of the 

system that the agent has witnessed to date. Depending on the system or problem to solve, agent 

architectures are classified into four categories including deductive reasoning, practical or goal-

oriented reasoning, reactive behavior, and hybridization of the previous categories. In deductive 

reasoning, the system including agents states as the environment is represented as logical 

formulae and the agent decision-making program is logical theory. This means that the behavior 

is generated through logical deduction. In practical reasoning, also known as cognitive 

architecture, the agents are endowed with mental states such as belief, desire, intention, wish or 

hope and are increasingly used as a design pattern to talk about computer programs in agent-

based simulations. The BDI architecture resulting from these trends consists of three components 

namely the belief, desire, and intention which lead the agent progressively from its world 

knowledge to the best choice of action to perform. Beliefs are the internal thought that an agent 

has about the environment. Desires are the set of what the agent wants to do. Intentions are the 

plans among options. In a purely reactive architecture, as defined in [45], there is no explicit 

representation and abstract reasoning. The agent reacts according to the perceptions of its 

environment, so decides what to do without any reference to its history. In this case, the decision 

function of the agent is defined as Ag:E → Ac going directly from environment states to actions. 

The hybrid type of agent architecture combines attributes of others to reach the kinds of 

capabilities that we might expect an intelligent agent to have (Be it reactivity, proactivity, or 

sociability). This is achieved through a decomposition of the agent behavior into separate 

subsystems and arrangement into a hierarchy of interacting layers (e.g., InteRRaP, Touring 
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Machines described in [29]). In other words, an agent uses its sensors to perceive the virtual 

spatially explicit world. It takes sensory input or percepts, transform them according to its 

decision-making apparatus, and produces actions as output that affect this virtual world through 

its actuators or effectors. The result of these actions is fed back to agent sensors in a usually 

ongoing, non-terminating interaction. 

3.2 Model-Driven Transformation Process 

The ultimate goal of the transformation is to produce a computerized version of actors 

mimicking adequately their decision-making mechanism in a virtual environment. In theory, any 

agent architectures presented in the last section could be used as a reference to build an agent 

model from AiC concepts. However, BDI is arguably the most popular and appears to be a 

simple and natural architecture when dealing with the agents representing human actors [46]. Its 

concepts are more similar to those of actor models and it offers a more straightforward 

description which makes models easy to understand and more expressive for formal knowledge 

representation and reasoning. As emphasized by many agent research works, the designing 

complex agents for socio/ecological systems is still an open research issue. BDI architecture has 

received particular attention as evidenced by a large number of extensions. The authors of [47] 

propose a BDI extension to include belief theory applied to agricultural land use where two main 

issues of the cognitive architectures are addressed, namely,  the complexity and computation cost 

[14], [42]. Other extensions such as BOID‡, EBDI§, and BEN** deal with social aspects such as 

spatial abilities, obligation, emotion, cognition, personality and emotional contagion of human 

beings [48]–[50]. Table 1 summarizes the main correspondences between actor and agent 

concepts as depicted in Figure 3 and later used for the meta-model designed. 

Table 1. Correspondences between concepts in actor and agent models 

Actor-oriented model Agent-based model Description 

Experience Belief What the entity knows about itself, others, and environment 

Potential option Desire What the entity wants to do to modify its world 

Implemented option Intention What the entity plans to do 

Capital Data Resource of the entity 

Object Object Situated geographic form 

Property Attribute Characteristics of the entity 

Motivation Goal What causes the choice of a plan 

Interest Utility Importance of an action 

In both actor-oriented and agent-based models, the environment is made up of agents/actors 

and objects representing land covers or land uses. These are represented in simulation platforms 

using the vector and raster layers coming from GIS software like QGIS or ArcGIS††. Several 

authors have demonstrated the power of spatial model and ABM integration in agent-based 

simulation platforms by examples (more details in [12], [36], [37], [42]). As in the traditional 

software development process, the major concerns in building an agent-based simulation model 

include cost reduction and quality of the end product referring mainly to the realism and validity 

of the generated model. MDA paradigm managed by Object Management Group (OMG) [51], 

provides a conceptual framework for building ABM at multiple levels of abstraction (depending 

on the representation of the reality observed, the tools used, the skill of modelers, etc.). This 

ensures that the model description is not solely tool-driven as this can affect the quality of the 

resulting model. 

 
‡ https://www.researchgate.net/publication/220794078_The_BOID_Architecture_--

_Conflicts_Between_Beliefs_Obligations_Intentions_and_Desires 
§ https://www.researchgate.net/figure/EBDI-POMDP-agent-as-a-mediator-for-trading-Grid-resources_fig2_335611260 
** https://www.jasss.org/23/4/12.html 
†† https://gisgeography.com/qgis-arcgis-differences/ 

https://www.researchgate.net/publication/220794078_The_BOID_Architecture_--_Conflicts_Between_Beliefs_Obligations_Intentions_and_Desires
https://www.researchgate.net/publication/220794078_The_BOID_Architecture_--_Conflicts_Between_Beliefs_Obligations_Intentions_and_Desires
https://www.researchgate.net/figure/EBDI-POMDP-agent-as-a-mediator-for-trading-Grid-resources_fig2_335611260
https://www.jasss.org/23/4/12.html
https://gisgeography.com/qgis-arcgis-differences/
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The MDA transformation process starts from a generic or Computation Independent Model 

(CIM) that represents the business process and requirements including actor models, data, 

messages, and resources to use. Then, the Platform Independent Model (PIM), including abstract 

models used for analysis and design steps, is created. Figure 3.b presents the main agent’s 

concepts and shows the rationale of the agent’s decision-making process. The agents use their 

sensors to perceive the world and produce as output the actions that affect it. The BDI agent 

processes from beliefs to action through goals, plans, desires and intentions. The result of these 

actions is fed back to agent sensors in a usually ongoing, non-terminating interaction. At the end 

of the MDA process, the final model code is generated from an existing Platform Specification 

Model (PSM). 

4 Spatially Explicit Agent-based Modeling Approach 

4.1 Methodology 

The methodology proposed aims to address the complexity of the modeling situation. Thus, it 

helps to identify and ensure the full participation of the various actors involved in a typical land 

use modeling project at different levels to provide accurate information including IT, GIS 

specialist’s specifications, and indigenous knowledge. Each step of the modeling workflow 

(Figure 4) is designed to be efficient to produce a model combining AiC, BDI, and spatial 

concepts. 

 

Figure 4. Workflow of spatially explicit agent-based modeling process 

Based on modeling workflow steps represented in Figure 4, we describe the different phases of 

the methodology from analysis to implementation as follows: 

• In the analysis phase (steps 1, 2, 3 in Figure 4), we define the problems in the context with 

the target community of practice in which the research is operated, the list of actors/entities, 

and their associated actions, liking actions or options to their consequences and leading 

either to a problematic action or final variables providing solutions to the land use problem 

(with the chain of environmental effects from PiC and the actor field from AiC). The 

correlation matrix indicates the different relations. 

• In the design phase (steps 4.1, 4.2, and 5 in Figure 4), we construct the spatially explicit 

world with domain experts and GIS specialists to represent the physical environment 

(directly from the analysis phase with PiC). Using the previous correlation matrix, a class 
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diagram is also designed to represent the social context using the causes-effects diagram as a 

starting point. 

• In the implementation phase (step 6 in Figure 4), we specify the agent model in a dedicated 

tool to produce an initial code for a spatially explicit agent simulation platform. We note that 

in step 6, the test and evaluation of the resulting generated model code are done by the 

modeler. If there is a problem or missing elements (agents, spatial entities, some behavior), 

the current model can be refined in step 5 and specified in 6 with all updates. 

4.2 Meta-Model for Spatially Explicit Agent-Based Modeling 

In the process of setting up the agent-based model specification language (ASL) we first define 

all the concepts for representing agents and their physical environment in the model. We also 

build minimal grammar for a new Domain Specific Language (DSL). We finally use a generator 

engine (called ASL2GAML) to facilitate model-to-model transformations up to the generation of 

an initial code that can further be customized with detailed information obtained from actors. To 

build a spatially explicit agent-based model in a simulation platform, the modeler will need to 

specify all the attributes of these components with the header block containing meta-data useful 

for the model copyrights (authors’ names, model description, target domain, etc.), include 

Beliefs in the agent component of AGE framework according to the hierarchical representation 

of different concepts used. Operationally, AGE fixes the base of agent code development 

following several blocks to provide and get the whole code to run in an agent-based simulation 

platform. The ASL meta-model presented in Figure 5 is a PIM built with Eclipse platform [52] 

using AGE concepts (Agent and Global and Environment) to transform the specifications 

provided into an XML(Extended Markup Language) model taken as input for code generation.  

 

Figure 5. Class diagram of ASL meta-model 

We defined and built a minimal grammar G for the new Domain Specific Language (DSL) 

which is represented by the following algebraic expression. G = (VN, VT , P, S) where: 

• VN is the set GlobalBlock, AgentBlock, ExperimentBlock, Action, SimplePlan, 

ComplexPlan, Output, Display, and Reflex of non-terminals which are variables denoting 

strings: 

VN = {GlobalBlock, SpecieBlock, ExperimentBlock, Action, SimpleAction, ComplexAction, 

Output, Display, Reflex} 
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• VT is a set of tokens, known as terminal symbols from which the strings are formed with 

identifiers and terminal symbols like INT, BOOLEAN, STRING, etc. 

• S represents the starting symbol or axiom from which the production begins and is 

represented as follows: Axiom = {ABModel} 

• P represents a set of not detailed production rules that specifies how terminals and non-

terminals are combined to form strings. Hence, a spatially explicit ABM composed of Global 

variables, Agents (depicting a real-life actor), and Experiment Blocks is represented by the 

following rulers (1): 

𝑃 =  {

𝐴𝐵𝑀𝑜𝑑𝑒𝑙 → 𝐺𝑙𝑜𝑏𝑎𝑙𝐵𝑙𝑜𝑐𝑘 𝑆𝑝𝑒𝑐𝑖𝑒𝐵𝑙𝑜𝑐𝑘 𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝐵𝑙𝑜𝑐𝑘
𝐺𝑙𝑜𝑏𝑎𝑙𝐵𝑙𝑜𝑐𝑘 → 𝐺𝑙𝑜𝑏𝑎𝑙𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑆𝑝𝑎𝑡𝑖𝑎𝑙𝐸𝑛𝑡𝑖𝑡𝑦                     
𝑆𝑝𝑒𝑐𝑖𝑒𝐵𝑙𝑜𝑐𝑘 → 𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦 𝑃𝑙𝑎𝑛                                                  
𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝐵𝑙𝑜𝑐𝑘 → 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑂𝑢𝑡𝑝𝑢𝑡                                

   (1) 

The DSL is described in Xtext using an EBNF style grammar [53]. To improve the quality of 

the final model, some constraints are subsequently specified in the grammar file using OCL 

(Object Constraint Language [4]). Finally, a parser allows the production of an ASL editor with 

syntax highlighting, code folding, content assistance, and integrated error markers. 

4.3 Transformation Rules from Actors to Agents 

Concerning the implementation level, Figure 6 summarizes the ASL2GAML’s transformation 

process, from the model specifications to the platform specific code. 

 

Figure 6. An illustration of the ABM transformation process 
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In Figure 6, the Xtext grammar for DSL, XML generator, platform specific code generator, 

literal specification, graphical specification, and code generator in GAMA platform are 

represented: 

• The Xtext grammar allows to produce the literal and graphic user interfaces. 

• Model is specified according to the data got from the field. 

• The data model is transformed into an XML model. 

• The generator engine (ASL2GAML) designed with formal rules transforms the XML model 

into GAML code for the simulation tool. 

Considering the social, biophysical and environmental impact branches of the PiC framework 

the following rules are applied : 

1. Each actor becomes an agent and its properties become the agent’s variables/attributes. 

2. Its personality including options, abilities, and experiences becomes the desires with a 

simple name driven by plans to implement and supported by beliefs. So, a plan is used to 

give more details on the actor’s option better than desire. 

3. Each object of society becomes a spatial entity that can be identified during the simulation 

depending on the relevance of doing so. 

4. Each association denotes an ability, a desire, or a request of agent X towards agent Y and 

thus defines an interaction between the future agents during simulation. 

5 Illustration of SEAMA Approach on a Modeling Case Study 

The approach introduced in this article is illustrated in a case study of modeling and simulation 

of hunting and animal population dynamics [36]. This model is useful for understanding the 

organization of hunting activities between local actors and the impact of hunting on the 

dynamics of land use. In this section, we highlight the relevance of the approach in terms of 

model expression during the design and subsequent transformations from domain analysis to 

code generation through CIM, PIM, and PSM. 

5.1 Domain analysis for CIM 

In this model, human hunters are key actors triggering the dynamics of land use changes through 

their activities with consequences on land cover and biodiversity. Hunting takes place 

6 months/year in a spatially explicit environment according to temporal shifting rules (e.g. every 

year, each hunter changes the location of his trap). Over the years, hunting camps were created 

and further increased land transformations from the forest into other land uses. A simulation 

platform is used to develop a model based on the antelope’s life history and the inhabitant’s 

behavior. It developed an artificial landscape similar to that of a hunting area representing the 

village. Thus, data have been digitalized with a GIS and set in the raster format and integrated 

into the simulation process. Figure 7 illustrates the problem analysis of land use chosen as 

globally presented in Figure 1. The actor side is constituted of hunters, conservation agencies, 

and blue duikers. Physical side is represented by roads, rivers, subdivisions, forests, and 

vegetation or agricultural land. 

5.2 Entities, Variables, and Behaviors of PIM 

At the conceptual level, the list of agents includes Conservation Agency (CA), Hunter and the 

mammal species (antelope or blue duiker). Other objects considered to build the environment are 

spatial entities representing subdivisions, roads, rivers, forests and agricultural lands where 

vegetation can grow. These geographical entities can become the geo-agents in simulation 

according to the model orientation. Table 2 gives detailed knowledge of the actor’s properties, 
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behavior, and important variables for modeling. Table 3 summarizes the relationships (0 or 1 and 

the nature) between the entities.  

 

Figure 7. Problem analysis of the sustainability of hunting activity 

Table 2. Actor’s description and parameters of the hunting model case study 

Elements Details 

Hunters • Action: hunting; 

• Motivation: make money to survive, reduce poverty; 

• Goal: catch blue duiker; 

• Properties: size, color, ethnic group, speed; 

• Abilities: move, pursue, catch, stop hunting, die, change strategy. 

Conservation 

Agencies 
• Action: make formulate rulers prohibit the abusive hunting; 

• Motivation: the disappearing of biodiversity affecting the live chain; 

• Properties: name and type; 

• Goal: sustainable management of our environment; 

• Abilities: move, pursue hunters, stop hunting, inform hunters. 

Antelopes • Action: grow; 

• Properties: age, sex, gestation length, size, color, max energy; 

• Goal: survive; 

• Abilities: eat, escape, panic, conceive, reproduce. 

Data used for 

spatially explicit 

world 

• Features: roads, rivers, subdivisions, forest, agricultural land; 

• Source: Global Forest Watch database in land use/cover section; 

• GIS tool: Quantum GIS 3.10. 

Global and output 

variables 
• In actor/agent level: number of hunters and antelopes, vegetation energy 

to consume or transfer, probability to catch antelope, etc. 

• In physical level: names of geo-entities and their characteristics. 

Table 3. Correlation matrix of the entities involved in the model 

Relation Antelope Hunter Forest Vegetation CA 

Antelope 0 1 (hunting) 1 (feed) 1 (feed) 1 (is protected) 

Hunter 1 (hunting) 0 1 (use) 0 1 (control) 

Forest 1 (feed) 1 (use) 0 0 0 

Vegetation 0 0 0 0 0 

CA 1 (protection) 1 (control) 0 0 0 
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At the conceptual level, the resulting model is represented as a class diagram (Figure 8) 

showing the social as well as the physical context. The social part includes actors and their 

relationships while the physical part includes the environment and its geographic entities. 

 

Figure 8. Class diagram of the model portraying actors’ behavior and environment attributes 

5.3 From PIM to PSM 

By referring to the actor-environment class diagram, we use the graphic editor to specify each 

block of the AGE following actor-agent rules defined in Section 4.3. Technically, in the Eclipse 

platform, using the new plug-in, we created the new abmodel project as presented in Figure 9.  

 

Figure 9. Specifications in the graphic editor 
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In Figure 9, the list of AGE projects is available on the left. The current project edited, at right, 

shows the specification process of the case study model. 

The initial and base model code automatically generated is presented in Figure 10.  

 

Figure 10. GAML code generated from ASL2GAML 

The code is constituted by: 

• The header represents the meta-data corresponding to the case study model dedicated to the 

hunting simulation. That generated code is constituted by three main blocks according to the 

AGE framework. 
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• All agents (a hunter, CA, and an antelope) become the species blocks in the GAML context 

(lines 22–49) or turtles in NetLogo context. 

• All variables (energy, number of agents, geographic entities) denoted by global and 

concerning the simulation process and virtual environment specified are observed in the 

global block at the beginning (lines 9–19).  

• All parameters (variation of the number of antelopes, energies, etc.) concerning the 

simulation outputs in the experiment block are observed at the end (lines 52–60). 

• Some outputs of variables are defined in standard displays. Those outputs allow us to 

observe the land uses defined in a virtual environment during the simulation process. 

The result of running the generated code is presented in Figure 11 where: 

• We observe a representation of the virtual spatial explicit world and agents generated from 

the initial code produced. 

• That world includes agents (6 hunters in red icons and 300 antelopes in grey icons) and 

spatial entities (the roads in red lines, the rivers in blue lines, the hamlets in blue shapes, the 

forests in green shapes).  

This knowledge can be specified by a domain expert or IT specialist or jointly and imported 

into the GAMA platform for simulation. But, it remains to complete the skeleton generated with 

AGE policy, based on the actor’s behavior.  

 

Figure 11. A resulting map from the model code execution displaying agents and geographic 

entities 

This environment and the associated code can be easily produced and a domain expert 

involved in a modeling project can reuse or customize it later to build a new model. This result 
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meets the requirements of a community of practice where people are working together to share 

knowledge related to some domain concepts. In addition to the quality attributes provided by the 

MDA process and automatic code generation and editor tools with error detection, this approach 

includes the spatial and social aspects (actors) in the modeling process to improve the 

expressiveness and validity of the final models. However, the transformation process of the AGE 

producing the GAML code is still in a preliminary state. 

5.4 Validation 

The validation of our approach was performed on a model case study, with the GAMA platform, 

using the metamodel to produce simulations in a participatory modeling context in Gribé village 

(Eastern Cameroon). All information concerning actors, their behavior and the environment were 

specified jointly with various stakeholders on the field including workers of the conservation 

agency who provided statistics of hunters and hunted animals; hunters who provided information 

on blue duikers (small antelopes) and researchers who provided GIS data/information. 

Specifications of the hunting model were elaborated according to AGE framework in ASL tool. 

In order to model actor reasoning, the approach experimented with two agent architectures to 

assess the validity of our approach: a simple BDI and an extension of BDI called SBDI designed 

and published in [48]. This architecture allows the integration of spatial knowledge and 

reasoning in the decision-making process of an agent. Before the generation of the initial model 

code, a total of 20 hunters were divided into two groups of agents according to these two 

architectures. 2000 antelopes were randomly distributed in the environment composed of spatial 

entities including a set of 35 subdivisions containing 6 forest stands, and 10 villages, crossed by 

roads and rivers. It also includes 4 land uses imported into the simulation tool. Each layer 

representing one land use type was described and organized in geometric and attribute 

information files. The simulation was carried out in order to assess the relevance of the model in 

terms of agents behavior and performances (number of captures) plotted in Figure 12. 

 

Figure 12. The result of spatially explicit simulation: hunter’s performance during the hunting activity 

for 24 cycles (6 months) 
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BDI and SBDI agents mimicked adequately the actual hunter’s behavior and blue duiker 

dynamics. The comparison of their performances also demonstrates that the integration of a 

cognitive dimension into the agent processes strongly improves the model’s realism and validity. 

The description of the approach used to integrate spatial knowledge in agents representing 

human actors is out of the scope of this article. The validation exercise on a case study discussed 

above highlights the operational aspect of our methodology on specific agent architectures. The 

proposed methodology is currently under user validation and their comments and inputs are 

gathered to be used for further improvements. 

5.5 Discussion 

In this article, an agent-based modeling approach, called SEAMA is introduced and supported by 

the ASL framework based on Belief-Desire-Intention architecture. A metamodel is built from 

this one to support the generation aspect of ABM and implementation. The approach is designed 

to handle many situations encountered in participatory modeling where the ABM paradigm is 

adopted and also where the hierarchical or non-hierarchical multi-level systems with spatial and 

temporal dynamics, actors, and behavior are taken into account in land use situations. Moreover, 

SEAMA relies on general ABM methodologies published in the literature [24], [41], [54]. This 

approach has been well described, and the transformation processes have been demonstrated and 

also applied to a modeling case study for user validation. The initial modeling problem created 

by the ad hoc models is solved by this approach. Moreover, the actor and spatial aspects are 

integrated into the metamodeling process allowing to capture of the environment and actor’s 

specification through agent architecture according to the AGE framework proposed. Finally we 

have compared our approach with existing metamodeling approaches according to five criteria 

with four taken in [13]: generating instances, editing metamodels (or models), user intervention, 

error detection; and spatial dimension in ABM. Table 4 summarizes the main similarities and 

differences. 

Table 4. Comparing our approach with others from the literature 

Approach/ 

Tools 

Criteria of positioning or comparison 

Generating 

instances 

Editing 

meta 

(models) 

User 

intervention 

Error 

detection 

SE ABM for 

land use 

Auto Man No Yes No Edited Param Auto Man Actor Spatial 

IRM4MLS/ 

SIMILAR 

[54] 

 *  *  *   *   

GEAMAS 

[55] 
  * *  *  *    

SPARK [56]   * * *  *  *   

NMDC/ TiC 

[13] 
*   *  *  *  *  

SEAMA/ 

TiC 
*   *  *  *  * * 

Auto: Automaic. Man: Manual. Param: Parameter. SE: Spatially Explicit 

In addition to presenting identical properties with the existing approaches, our approach allows 

us to specify the actor and environment properties and generate an instance of a spatially explicit 

model that we wish to develop for land use simulation. The experimentation of our approach on 
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a land use case study clearly reveals that SEAMA respects the diversity of situations related to 

the actor’s behavior and environment at the same time in a generative process. Comparing this 

approach with the approach of Natural Model-based Design [57] we can see that our approach 

takes into account the driving concepts such as Belief, Desire, and Intention more clearly and 

combines them with the agent’s spatial interaction to represent the process. According to [58] 

our transformation generates about 43% of the GAML code (see Figure 10), these results are 

encouraging compared those obtained with Natural Model-based Design [57] approach. 

6 Conclusion 

In this research, we have addressed the issue of effective participatory modeling and simulation 

of land use by combining agent-based and spatially explicit approaches. The main problems 

identified in existing methods are related to the lack of domain knowledge from ICT analysts, 

low productivity of domain experts, and low rate of model re-usability which translate into 

questionable model validity, higher costs, and longer development time. In the proposed 

SEAMA approach, the system analyst describes actor behaviors and spatial features using 

information, knowledge, and perceptions obtained from the various stakeholders in a community 

of practice. These specifications are used in the AGE framework designed to automatically 

generate an initial model code. The pilot experimentation of this methodology is implemented in 

the eclipse development platform and illustrated with a hunting model case study. The validation 

exercise carried out reveals it to be more efficient than other approaches, especially, easier to 

carry out for domain experts and less cumbersome in terms of the number of model-to-model 

transformations in the whole life cycle. As a consequence, SEAMA improves the model validity 

and reduces considerably the time allocated to model implementation. The next steps of this 

research are to enrich the ASL to capture more spatial and agent specifications and improve the 

transformation rules for more meaningful generated codes. Another work foreseen to improve 

model validity could be to integrate spatial knowledge and reasoning in the agent decision-

making mechanisms. Finally, an appropriate formal testing and evaluation scenario should be 

elaborated for each category of stakeholders as such validating the model with all stakeholders. 
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