
Complex Systems Informatics and Modeling Quarterly (CSIMQ)

eISSN: 2255-9922

Published online by RTU Press, https://csimq-journals.rtu.lv

Article 179 , Issue 32, September/October 2022, Pages 28–43

https://doi.org/10.7250/csimq.2022-32.02

Security Requirements Specification and Tracing

within Topological Functioning Model

Erika Nazaruka*

Department of Applied Computer Science, Riga Technical University, 10 Zunda

Embankment, Riga, LV-1048, Latvia

erika.nazaruka@rtu.lv

Abstract. Specification and traceability of security requirements is still a

challenge since modeling and analysis of security aspects of systems require

additional efforts at the very beginning of software development. The

topological functioning model is a formal mathematical model that can be used

as a reference model for functional and non-functional requirements of the

system. It can also serve as a reference model for security requirements. The

purpose of this study is to determine the approach to how security requirements

can be specified and traced using the topological functioning model. This article

demonstrates the suggested approach and explains its potential benefits and

limitations.

Keywords: Security Requirements, Requirements Traceability, System

Modeling, Topological Functioning Model, Reference Model.

1 Introduction

Security requirements refer to providing confidentiality, integrity, and availability of information

assets. Over time, the concept of integrity of data has transformed into the concept of

trustworthiness of data [1]; and the confidentiality of data has become more focused on the

requirement of data privacy. Security requirements derive from domain-related and technology-

related legal and regulatory documents. As Liu mentions [1], for handling security requirements,

several groups of modeling and analysis approaches exist – goal-based, scenario-based, semi-

formal, and formal models as well as ontologies and patterns. Each of the groups has its own

purpose and advantages in certain cases.

Security requirements analysis and specification is a very specific issue. It has no large

elaboration with the Model-driven Architecture (MDA). The MDA is a set of principles, models,

and viewpoints that are dedicated to more formal and automated development of software

systems. The main principle applied within the MDA is a separation of concerns. Thereof, each

model reflects a viewpoint on the system from one certain concern: computation independent,

* Corresponding author

© 2022 Erika Nazaruka. This is an open access article licensed under the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/4.0).

Reference: E. Nazaruka, “Security Requirements Specification and Tracing within Topological Functioning Model,” Complex

Systems Informatics and Modeling Quarterly, CSIMQ, no. 32, pp. 28–43, 2022. Available: https://doi.org/10.7250/csimq.2022-

32.02

Additional information. Author’s ORCID iD: E. Nazaruka – https://orcid.org/0000-0002-1731-989X. PII S225599222200179X.

Received: 15 June 2022. Revised: 4 October 2022. Accepted: 9 October 2022. Available online: 28 October 2022.

https://csimq-journals.rtu.lv/
http://creativecommons.org/licenses/by/4.0
https://orcid.org/0000-0002-1731-989X

29

platform independent, and platform specific. Requirements for the system and a domain model

are linked with the computation-independent viewpoint and, correspondingly, model. How to

represent security requirements within it is a question. Two opportunities, potentially, are visible:

either as a separate model or as references to an external element (i.e., a requirement). This

article focuses on the second opportunity.

The goal of this research is to evaluate the suitability of a Topological Functioning Model

(TFM) for referencing security requirements as well as perspectives of this model to be used as

an aid for the analysis of potential security threats. This article continues the research started

earlier [2], [3] and focuses on referencing security requirements. Previous articles ([2] and [3])

focused on demonstrating the capabilities of the TFM as a central reference model for model-

based software development. Thanks to the formal mathematical background of the TFM and

mappings between the TFM and functional requirements and the TFM and elements of a logical

design model, it was possible to extrapolate the same reference principles to the non-functional

requirements, such as performance requirements. However, [2] and [3] did not address the main

issue of this article about references to security requirements.

To understand the suitability of the TFM for referencing security requirements, the following

research methodology was used:

1. First, the systematic literature review on security requirements traceability from

specification to logical design models to code elements (together with other functional and

non-functional requirements) is done. For having more complete coverage of the existing

approaches, the following search criteria were used:

• Language – English;

• Publishing year – approximately last 15 years, i.e., from 2007 to 2022 (including);

• Keywords – from combinations of at least two categories: general and domain,

domain and specific;

• Publication database – IEEE Xplore Digital Library.

The found information sources were filtered additionally by their relevance to the research

questions (Section 2). As a result, the classification of the traceability approaches with their

strengths and weaknesses was created.

2. Second, the suitability of the TFM for referencing security requirements forward and

backward was analyzed theoretically. As a result, the proper internal structure of the model

was refined.

3. Third, the application of the theoretical results was illustrated and the validity of the results

was explained.

The article is organized as follows. Section 2 provides a short overview of the related work on

the specification of security requirements. Section 3 gives, shortly, the background information

about TFM and its use as a formal reference model. Section 4 describes referencing security

requirements using the TFM. Section 5 illustrates the proposed approach and its properties.

Reflections on the applicability of the TFM for referencing security requirements conclude the

article.

2 Related Work on Security Requirements Specification and Traceability

The issue of security requirements specification in analysis and design models has existed for a

long time and has not lost its importance after the appearance and evolution of the MDA and

model-driven development. There are multiple approaches for the analysis and design of security

requirements, where security can be an entire single object or a part of the object of the analysis

and design [4]. Security requirements may be specified separately or as a part of a software

model. Proper specification and established forward/backward traceability mechanisms can

make verification of security requirements and change impact analysis more predictable. The

open questions analyzed in related works are the followings:

30

• Q1. What are the benefits and limitations of different approaches for the specification of

security requirements including traceability mechanisms?

• Q2. How forward traceability from security requirements to the design model to code

elements is implemented, and what are its benefits and limitations?

• Q3. How backward traceability from code elements to the design model to security

requirements is implemented, and what are its benefits and limitations?

The publication database, mentioned in the introduction, was searched for scientific

publications on security requirements referencing (specification and traceability). The keywords

used were the following: ((security requirement* AND model* AND referenc*) OR (security

requirement* AND traceability) OR (security requirement* AND tracing) OR (security

requirement* AND specification) AND (security requirement* AND verification)), where “*”

represents any possible ending of the word. In the beginning, 650 papers were returned by this

request, 58 of them were found relevant by the title, 47 of them where found relevant by the

abstract, and first 10 of them were found to be relevant by the content quality and presented

details were analyzed. To extend the number of information sources about the use of reference

models, the request ((security requirement* AND model* AND referenc*) was searched by

Google and found information sources were filtered by relevance, content, and presentation

quality. As a result, 4 more papers were reviewed. The considered sources cover those

specification, referencing and traceability approaches that are most commonly cited.

2.1 Benefits and Limitations of Specification Approaches

Approaches for security requirements specification may be grouped into formal, semi-formal and

informal ones.

Formal approaches. The formal approaches are the most non-ambiguous, since they apply

mathematical logic or programming language principles. They allow using descriptive text in a

natural language only as a reference to the original formulation of the security requirement.

Thus, the approach presented in [5] in 2022, represents requirements as code, namely, as object-

oriented (OO) class templates. The presentation as OO classes benefits from OO principles:

generalization and inheritance (eliminated redundancy), improved maintainability, combinations

with formal notations (logic), OO analysis, and integration with DevOps tools and processes.

However, many open questions on specification of multiple quality attributes, types of security

requirements (positive/negative, functional/non-functional), and unclear applicability for

industrial case studies still exist. Besides, such specification is far from a human-readable

format. Another approach, the UML-like approach with logic, presented in [6] in 2018, uses

first-order logic and meta-modeling for the definition of the main principles of specification of

security requirements within the model. The security requirements are specified as properties

that supplement the modeled system. Corresponding security policies are assigned to the

properties. The main drawback, mentioned by the authors of this approach, is a lack of explicit

traceability from requirements to model elements to code.

Despite the formalism used, complexity of such specifications requires additional knowledge

of developers and manual or partially automated activities for requirements in natural language

formalization and their dependency discovery.

Semi-formal approaches. Semi-formal approaches use a combination of formal means and

natural language, where the latter plays a supplementing role for different diagrams or models.

Therefore, the required information can be kept as within as separately from models/diagrams.

Semi-formal approaches form the largest group of approaches. Below, they are analyzed in

chronological order.

From 2006 to 2009. One representative of in-model specification is the security requirements

engineering method where use cases and misuse cases are combined together in order to make

proper analysis and modeling of threats, attacks, and risks presented by Mellado et al. [7] in

2006. The benefits of this method relate to using understandable notation and means of the

31

requirements engineering. Such specification is well-observable but lacks a representation of the

sources of security requirements.

From 2010 to 2019. The method proposed by Yin and Qiu [8] in 2010, suggests that security

requirements will be specified at three levels (or steps of the method): in the i*-model, as

formally specified policy, and as a use case scenario in UML. This means that here security

requirements will be incorporated into the model of the system.

Tøndel et al. (2010) explain the use of UML activity diagrams and use case models for

specification and analysis of misuse cases [9]. The general idea is to combine misuse cases with

attack trees and security activity models thus improving the analysis of potential attacks and

threats. In reality, the security model is integrated with certain parts of the system model. Thus,

this approach also can be considered as an in-model specification.

Nhlabatsi et al. [10] in 2015, presented an approach that specifies security requirements in

natural language. Then, these requirements are related to security controls by explicit traceability

links called causal traces. The approach is based on the correct definition of assumptions. The

weaker assumptions are discarded. This example can be considered as a non in-model

specification of security requirements.

Zhioua et al. [11] in 2017 published their vision on security requirements. In their approach

security requirements specified in natural language are manually transformed into a formal

representation (similar to Java programming language) by a security expert. The security expert

extracts key elements and builds formulas and patterns on the chosen formalism. Security

guidelines and requirements can be modeled in form of a sequence of atomic propositions or

statements that represent the behavior of the system. The program is modeled by using the

Program Dependence Graph which represents both control and data dependencies. The mapping

between the abstract propositions and the program model is managed in the security knowledge

base. The main weaknesses of the approach are manual activities: manual extraction of key

elements from security requirements and guidelines; and manual establishing of mappings

among elements. Since the proposed approach is manual, it lacks explicit traceability. This

example can be considered as a non in-model specification of security requirements.

One more interesting in-model approach is presented by Ramadan et al. in 2017, where the

authors describe the use of Business Process Model and Notation (BMPN) for the specification

of design-level security verification [12]. High-level requirements are specified in SecBPMN2

language and translated to secure architectural models in UMLsec. SecBPMN2 uses 11 security

annotations to BPMN elements. In turn, UMLsec is the UML supplemented with security

specific “stereotypes” and “tags”. Automated acquisition of code is possible in the case of the

development of proper transformation modules. The authors highlighted that their framework

can be used for automatically establishing traceability between high-level security requirements

and technical security policies and the flow of threatening activities. The use of BPMN allows

negotiating with the domain experts; and automatically obtained UML sequence diagrams allow

proper implementation by the developers. However, human errors can be entered at the very

beginning of modeling.

Another approach, presented by Emeka and Liu in 2018, considers requirements specification

using controlled formal language SOFL (Structured Object-oriented Formal Language) with

mandatory pre and post conditions for dependency analysis and CDFD (Conditional Data Flow

Diagrams) automated construction. However, the manual transformation of textual requirements

into SOFL and then from CDFD to attack trees requires experts participation. This example can

be considered as a non in-model specification of security requirements.

From 2020 to 2022. Ponsard et al. [13] in 2020, presented their vision of using a KAOS

model. Security and safety requirements are expressed using principles of Goal Oriented

Requirements Engineering. Mappings between a KAOS model and constraint programming

elements are set manually. The formal semantics is based on temporal logic and a formal pattern

library. The approach allows automated analyzing of multi-parameters of security in high-level

design models. The main limitations are the granularity and rounding of calculation that may

32

cause the incorrectness of mappings as well as one-level traceability. This example can be

considered as an in-model specification of security requirements.

Quamara et al. proposed in 2021 a modeling framework for security requirements [14] that has

three layers: a mission layer that is used for capturing what is needed to be achieved by the

system; a functional layer that is used for capturing how to achieve what is needed to be achieved

by the system; and an architectural layer that is used for capturing which elements can finally

realize the “what” and “how”. In such a way formalization of both model and security

properties is achieved. Semi-formal constructs of UML are used for graphical representation of

the architecture, functions, and mission. Formal constructs are used for specification, reasoning,

and verification of properties as First-Order Logic expressions but are not limited to them. This

example can be considered as an in-model specification of security requirements.

Tsoukalas et al. [15] in 2021, presented their vision of the Security-by-design approach. In this

approach, textual security requirements are processed using Natural Language Processing

techniques defining such classifiers as Project, Priority, Security Characteristic, Action, Actor,

Object and Property. Class Requirement and sub-class structures for classifiers are used. Each

requirement is represented as a JSON object. Syntactical and semantical similarities are analyzed

for classes with the same (or having similar meaning) classifiers using the ontology WordNet.

One of the benefits is the ability to create the Security Requirements Knowledge base and use it

for automated searching for similar or additional requirements and suggestions of alternatives.

The main drawback is that this approach requires the participation of security experts for results

validation. Besides, it cannot handle interconnected, overlapping, and redundant requirements.

This example can be considered as a non in-model specification of security requirements.

Olthuis et al. [16] in 2021, presented their approach that uses generated (generic) traces. In

this approach, requirements in natural language are manually transformed into formal language

LTL stored in JSON files. Then, traces are generated in the common trace format (CTF). Such

representation allows executing, design, and verifying requirements prior to their

implementation. However, the representation of requirements and traces are not user-friendly.

This example can be considered as a non in-model specification of security requirements.

Semi-automatic semantic and probability analysis is presented by Wang et al. in 2022 [17].

Here, high-level security requirements can be traced horizontally and vertically in an automated

way by using manually determined “indicators” of input, time, task refinement, triggering

conditions, and realization similarities with rather high recall value. The indicators are reusable.

The manual identification of indicators in high-level security requirements and the focus only on

textual requirements are the main mentioned weaknesses. This example can be considered as a

non in-model specification of security requirements.

As rightly noted in the article [12], BPMN and UML based approaches address security in the

development phases without a proper alignment to sources of security requirements and to the

requirements themselves. Both approaches – the in-model specification of security requirements

and referring to the externally kept security requirements and their sources – are useful. The

advantages of the in-model specification are the direct link with the functional parts of the

system and the possibility to “execute” the specification before its implementation. The out-of-

model specification also has its advantage, i.e., the specification of security requirements

themselves may be integrated with threats, vulnerabilities, attack scenarios, risks, sources, and

other factors.

Looking at the tendencies before 2020, one can see that UML and BPMN modeling principles

were used in most. Starting from 2020, one can conclude that today’s trend is on supplementing

(or even replacing) modeling activities with Artificial Intelligence techniques, such as Natural

Language Processing and Machine Learning Models. They allow elimination of manual

activities of security experts on dependency analysis among security requirements and on

verification of security requirements based on their descriptions, accepted security procedures,

guidelines, and standards.

33

Informal approaches. Informal approaches are well-elaborated now and wide-spread in the

IT industry, therefore are less presented among the scientific research results. They include such

techniques as manual layering, key indicators, and manual informal specification and analysis of

security requirements and trace links by using predefined security procedures and checklists.

Their main weakness is that they require a long time for analysis of security requirements, their

interdependencies and their impact on other related elements. As an example of such approaches,

the classification of most reusable security requirements sources presented by Schmitt and

Liggesmeyer [18] can be considered. It includes three elements: security information and

knowledge (diagnostic and prescriptive), software requirements engineering (SRE) methods, and

compliance obligations. The first two sources provide knowledge about threats, weaknesses, and

vulnerabilities. The last source imposes raw requirements. All threats, weaknesses,

vulnerabilities, and raw requirements must be analyzed together when specifying security

requirements. The authors propose to define security requirements scope areas and then re-use

those topic specific fragments from the sources during the analysis and specification of security

requirements. In essence, the authors suggested creating a repository where all the sources of

security requirements are organized in scope areas and each scope has sources from all the three

categories.

2.2 Forward and Backwards Traceability

Not all of the considered research papers included detailed enough information on forward and

backward traceability. There are different types of traceability mechanisms (Table1): direct

tracing using OO principles for security requirements formalized specifications [5]; mapping

rules in trace models [10], [12]; or theoretically proven mappings from design to programing

language elements [15]. Most of the traceability mechanisms implement forward trace links from

the security requirements origins (sources) to the formal representation or design elements. Just

those using OO principles are forward traceable to code constructs [5], others are theoretically

possible but exact implementation was not presented [10], [5] due to the focus of research on

requirements verification and dependency analysis.

Table 1. Forward traceability mechanisms and their limitations

Approach Year Mechanism Limitations

Requirement as

Code [5]
2022 Direct tracing via implementation

A difficult-to-read format for

non-technical stakeholders.

Semantic and

probability

analysis [17] 2022

Security requirements can be traced

horizontally and vertically; five types of

dependencies;

Manual identification of

indicators in high-level security

requirements. Implementation of

forward traceability to code

elements is absent.

Security-by-

Design [15]
2021

Theoretically it is possible to determine

implementing classes by strict constructs

actor-action-object.

Implementation of forward

traceability to code elements is

absent.

Generic traces

[16]
2021

Matching traces are explicitly represented in

a JSON file and match trace events to

abstract propositions in the design

specification.

Implementation of forward

traceability to code elements is

absent.

SecBMPN2 and

UMLsec [12]
2017

Traceability (mapping rules in trace models)

between high-level security requirements

and verifiable technical security policies as

well as, potentially, to code elements.

Forward traceability to code

elements is possible in the case of

code generation.

Causal

traceability [10]
2015

Causal traces from the source artifact to the

specification.

Implementation of forward

traceability to code elements is

absent.

34

Looking at the same research for backward traceability, we see that in several cases the

mechanism used differ (Table 2). Direct tracing allows using the same principles in forward and

backward directions and has the same issues [5]. In the case of using trace models [11],

backward traceability is possible when using trace logs of transformations and transformation

modules are available. In the case of using some set of indicators for requirements verification or

dependency analysis, backward traceability to the source of the requirement is established, but

between different levels of implementation is not presented.

Table 2. Backward traceability, its benefits and limitations

Approach Year Mechanism Limitations

Requirement as

Code [5]
2022 Direct tracing via implementation.

A difficult-to-read format of

security requirements for non-

technical stakeholders

Semantic and

probability

analysis [17]

2022 Five types of dependencies.
Only dependencies at one level of

security requirements

Security-by-

Design [15]
2021

Reference to the initial requirement in

natural language is explicit.

Backward traceability from code

constructs is absent.

Generic traces

[16]
2021

Matching traces are explicitly represented in

JSON file and matches trace events to

abstract propositions in design specification.

Backward traceability from code

constructs is absent.

SecBMPN2 and

UMLsec [12]
2017

Traceability (mapping rules in trace models)

between high-level security requirements

and verifiable technical security policies as

well as, potentially, from code elements.

Backward traceability from code

elements is possible in the case of

using automated transformation

modules and tracing logs.

Causal

traceability [10]
2015

Causal traces from the specification to the

source artifact.

Backward traceability from code

constructs is absent.

In general, there are many approaches that researchers develop and suggest for security

requirements specification and analysis to keep the relation with the original requirements or

sources of those requirements, formalize specification of requirements in natural language in

order to find inconsistencies among them and/or to implement them in design and code elements.

The main focus now is on the source-requirement-design chain. Specification of security

requirements concerns also behavioral (functional) characteristics of the system and links

security-related limitations to them. Specification of those links can be implemented as an in-

model or out-of-model solution. However, establishing traceability links from security

requirements sources to code elements and backward is less developed. The largest part of the

research focuses on the “source- formal specification” path and rarely to the “design element”.

Besides, tracing from design elements to code elements is not described.

In this article, the application of TFM as a reference model and traceability principles of

topological functioning modeling are described. The presented approach is one of the in-model

specification approaches and inherits the same benefits and limitations. However, thanks to the

formal and holistic nature of the TFM, it includes also “trace models” between informal

specifications and formal elements of analysis, design, and implementation. It opens an

opportunity to leverage the advantages of element direct tracing.

3 TFM as a Reference Model for Requirements

This section describes the main elements of the TFM and the main concepts of the topological

functioning modeling starting from the essential TFM constructs and ending with known

capabilities of this model for transformation into other software development artifacts.

35

3.1 Topological Functioning Model in Brief

The TFM is a formal mathematical model. Its main purpose is to facilitate understanding and

analysis of the functionality of systems of any type – business, software, biological, mechanical,

and so on [19]. The TFM represents the modeled functionality as a digraph (𝑋, Θ), where X is a

set of inner functional characteristics (further called functional features) of the system, and Θ is a

topology set on these characteristics in a form of a set of cause-and-effect relations. Topological

functioning models are comparable just like any digraphs. This property may be used to analyze

similarities and differences among TFMs using a continuous mapping mechanism [20]. Since the

1990s the TFM is being elaborated for software development [21], at the beginning within the

object-oriented paradigm and, later, within the model-driven development.

The TFM is characterized by the topological and functioning properties [22]. The topological

properties are connectedness, neighborhood, closure, and continuous mapping. The functioning

properties are cause-and-effect relations, cycle structure, inputs, and outputs. The composition of

the TFM is presented in detail in [19]. In brief, it could be manual with the starting point in

informal textual descriptions as within TFM4MDA (TFM for Model Driven Architecture)

explained in multiple sources [23]–[25] and semi-automated with the starting point in use case

scenarios as in the IDM toolset [26].

The main TFM construct is a functional feature (FFi) that represents system’s functional

characteristic, e.g., a business process, a task, an action, or an activity [22]. It can be specified by

a unique tuple (1).

 FFi = <A, R, O, PrCond, PostCond, Pr, Ex>, where 𝐹𝐹𝑖 ∈ 𝑭𝑭 (1)

Where tuple elements are as follows [19]:

• A is an object’s action,

• R is a set of results of the object’s action (it is an optional element),

• O is an object that gets the result of the action or a set of objects that are used in this action,

• PrCond is a set of preconditions or atomic business rules,

• PostCond is a set of post-conditions or atomic business rules,

• Pr is a set of providers of the feature, i.e., entities (systems or sub-systems) which provide or

suggest an action with a set of certain objects,

• Ex is a set of executors (direct performers) of the functional feature, i.e., a set of entities

(systems or sub-systems) that enact a concrete action.

As was mentioned, TFM’s functional features have a topology over them in the form of

cause-and-effect relations. The cause-and-effect relations between functional features define the

cause from which the triggering of the effect occurs. The formal definition of the cause-and-

effect relations and their combinations are given in [27]. It states that a cause-and-effect relation

is a binary relationship that links the cause functional feature to the effect functional feature. In

fact, in many cases this relation indicates a control flow transition in the system. The cause-and-

effect relations (and their combinations) may be joined by the logical operators, namely,

conjunction (AND), disjunction (OR), or exclusive disjunction (XOR). The logic of the

combination of cause-and-effect relations denotes system behavior (e.g., decision making) and a

flow of execution of system’s functions (e.g., in parallel or sequentially).

The TFM can be manually, but following the precise rules, transformed into most used UML

(Unified Modeling Language) diagram types: class diagrams, activity diagrams, use cases and

their textual specifications [28]. Besides, it can be transformed into Topological UML’s [29]

diagrams such as Topological Class diagrams, Topological Use Case diagrams, Activity

diagrams, State Chart diagrams, and Sequence and Communication diagrams [30]. Thus, the

36

TFM holds all essential knowledge from the system’s domain that should be implemented in

design models and source code.

3.2 A Formal Reference Model

A topological functioning model represents a certain system’s functionality formally. The

question can be what the word “system” means in the topological functioning modeling. There

are several definitions in the Oxford Learner’s Dictionary of the meaning of “a system”. For

instance, a system is “a group of things, pieces of equipment, etc. that are connected or work

together”, or “an organized set of ideas or theories or a particular way of doing something”†.

Both definitions are true for topological functioning modeling. This means that the TFM can be

used for modeling any system that is represented by a group of things that are connected to work

together according to an organized set of rules. That means that the TFM can specify a business

system, an information system of this business system, a software system of the information

system and so on – systems and their sub-systems. On the other hand, the TFMs (as mentioned in

section 3.1) can be compared for similarities and differences by using continuous mapping of

topological spaces. This means that the mapping can be used to analyze the changes in case of

introducing new functions or modifying the already existing ones.

Therefore, if we consider distinguishing two domains – a problem and a solution, then we can

speak about two systems – a system “AS IS” and a system “TO BE”, correspondingly. In the

case of topological modeling of functioning, if the TFM “AS IS” represents an existing system,

then the TFM “TO BE” is modified TFM “AS IS” obtained as a result of mapping from the

requirements to the system “TO BE” onto the TFM “AS IS”.

Functional requirements within the TFM. Mappings from functional requirements (FRs)

onto the TFM functional features can be one-to-zero, one-to-one, one-to-many, many-to-many,

many-to-one, and zero-to-one [2], [3], [31]–[33]:

• One-to-one means that the functional requirement completely specifies one existing

functional feature of the domain, for instance, the authorization of a registered user.

• One-to-many, many-to-one, and many-to-many cases relate to situations when specifications

of functional requirements and/or functional features are too decomposed. One-to-many and

many-to-one are special cases of the relation type “many-to-many”. These cases can be

caused by different levels of details in mapped elements. Such cases indicate and help in

discovering decomposed, overlapping, or incomplete requirements.

• One-to-zero and zero-to-one. These are cases of new / undefined /missed functionality either

in the specification of requirements, or in the model of the system. The “one-to-zero” occurs

when one functional requirement describes new (or undefined) functionality of the system

that can cause modification of the system and its TFM. The “zero-to-one” occurs when the

requirements specification does not contain any functional requirement corresponding to the

already defined functional characteristics. This can indicate the functionality that either will

not be implemented in the “target” system, is new, or is missed. The new functionality will

require changes in the existing processes of the system. The missed functionality either is not

mentioned in the requirements specification or will be changed but it is not explicitly

expressed.

As a result, mappings allow finding incomplete, additional, conflicting, unnecessary, as well

as redundant functional requirements for the system functionality.

At present, a functional requirement is specified as a tuple (2) of its identifier idFR and textual

description descrFR. The textual description is not limited to its format, it could be modified if

necessary.

 FRi = < idFRi, descrFRi >, where 𝐹𝑅𝑖 ∈ 𝑭𝑹 (2)

† https://www.oxfordlearnersdictionaries.com/definition/english/system?q=systemType

https://www.oxfordlearnersdictionaries.com/definition/english/system?q=system

37

Then a mapping from a set of functional requirements to a set of functional features can be

specified as a tuple (3), where properties of this mapping can also be indicated as Boolean

variables isComplete for indicating completeness and isOverlapping for indicating overlaps [2],

[3].

 FR2FF = < FR, FF, isComplete, isOverlapping> (3)

Non-functional requirements within the TFM. Non-functional requirements (NFRs) can be

mapped onto the TFM functional feature or a set of features by providing referencing in a way

similar to the specification of the corresponding FRs. The possible types of NFRs mappings onto

the TFM are one-to-zero, one-to-one, one-to-many, many-to-many, many-to-one, and zero-to-

one [2], [3]:

• One-to-one is when one non-functional requirement is related to the concrete functional

feature and must be implemented in the corresponding entities. For instance, a functional

feature specifies retrieving of some set of records for some period from the database and a

non-functional feature specifies that the accomplishment of the request must not exceed 3

milliseconds.

• One-to-many is when one non-functional requirement is related to all noted functional

features and must be implemented in all the corresponding entities. For instance, several

functional features specify retrieving data from the database and some successive

calculations, and a non-functional feature that specifies that accomplishment of the request

to the database must not exceed 3 milliseconds.

• Many-to-one is when more than one non-functional requirements are related to one noted

functional feature and must be implemented in the corresponding entities. It could be

considered a special case of the many-to-many relationship. For instance, two non-

functional features specify the requirement for the language of the user interface and the

requirement for the provided software interface. Both must be implemented in the input

functional feature that specifies interaction with the users of the software.

• One to zero. One non-functional requirement is not related to any functional feature and is

not traceable in the model and the code. This indicates that this requirement is out of the

scope of the model and, hence, out of the scope of the system planned. There could be two

causes, i.e., either the requirement is not appropriate, or the model lacks the required

functionality. The latter may indicate an incomplete analysis of the required functions that

are new for the system where the software will run.

• Zero to one. A functional feature is not related to any non-functional requirement. It is a

reason to recheck the non-functional requirements.

As a result, mappings allow extending the specification of functional characteristics of the

system with non-functional attributes and find incomplete, additional, conflicting, and redundant

requirements to the system.

A non-functional requirement is specified as a tuple (4) of its identifier idNFR and textual

description descrNFR, a dynamic characteristics DNFR that can be expressed as a value or as a

function (e.g. D=f(p), where p is a parameter set of some function f), and a scope SCNFRi of non-

functional requirements. The scope may be a process, persistent data, or a whole system. The

textual description is not limited to its format, it could be modified if necessary.

NFRi = < idNFRi, descrNFRi, DNFRi, SCNFRi >, where 𝑁𝐹𝑅𝑖 ∈ 𝑵𝑭𝑹 (4)

Then a mapping from a set of non-functional requirements to a set of functional features can

be specified as a tuple (5) for the general case many-to-many [2], [3].

 NFR2FF = < NFR, FF> (5)

Security Requirements within the TFM. As mentioned before, security requirements are

considered a part of a set of non-functional requirements. However, security requirements are

38

more complex since they cannot be expressed positively like, for instance, functional

requirements. They represent negative conditions, actions, and scenarios. Therefore, their

integrations with the TFM cannot be expressed using the tuple (4) of a non-functional

requirement. This tuple must be extended to represent information that is very important for the

understanding its origin, and essence as well as for further analysis.

Therefore, the initial non-functional requirement’s tuple should be modified as shown in

expression (6). The dynamic characteristics that are important for performance requirements can

be excluded. The following elements are added to the specification of a security requirement SRi:

a requirement’s identifier idSRi, a requirements textual explanation descrSRi, a scope SCSri of the

requirement (the list of a process, a persistent data, or a whole system can be extended with other

elements), a set As of information assets that should be protected, a set Mrs of measures that

should be applied for assets protection, a set Srs of sources of this requirement, a threat thr, a

textual description of consequences cnsq, an assessment of the associated risks, and the kind of

this security requirement according to the predefined list – kind.

SRi = < idSRi, descrSRi, SCSri, As, Mrs, Srs, thr, cnsq, risk, kind >, where 𝑆𝑅𝑖 ∈ 𝑵𝑭𝑹 (6)

A mapping from a set of security requirements to a set of functional features is specified as the

same tuple (5) for the general case many-to-many of non-functional requirements since security

requirements are a subset of non-functional requirements. Mappings from the security

requirements onto the TFM have the following meaning:

• One-to-one is when a security requirement is linked to a certain functional feature and must

be implemented in the corresponding design entities. For instance, when a certain validation

of input data must be implemented before transferring data to processing.

• One-to-many is when one security requirement is linked to all noted functional features and

must be implemented in all the corresponding entities. For instance, when transferred data

must be encrypted before transferring to the database.

• Many-to-one as a special case of the many-to-many relationship is when more than one

security requirement is linked to one noted functional feature and must be implemented in

the corresponding entities. For instance, when validation of input data before and encryption

of output data after must be implemented in the same function.

• One to zero. A security requirement is not linked to any functional feature. This indicates

that a model lacks its implementation. This case may indicate an incomplete analysis of the

required functions of the system or some new functionality that is not but must be

implemented.

• Zero to one. A functional feature is not linked to any security requirement. This could be a

correct case, but for input and output functional features this case must be re-checked.

4 Illustrative Example

Let us consider the example of the TFM for a library system. The TFM (Figure 1 and Figure 2)

specifies the main functionality provided by the library, i.e. registering persons as readers, giving

out and taking back the books as well as imposing a fine in case of damages to the book or the

exceeded loan time.

Let us assume that the task is to create new software that should support librarians’ work. The

new software must implement three secure design principles – input data must be validated

before processing (P1), output data must be checked for not breaking confidentiality (P2), and a

password must be encrypted before saving (P3).

39

Figure 1. The topological functioning model (simplified) of the library operation [2]

Figure 2. The specification of TFM functional features, where S – subordination, I – inner of the system,

E – external to the system, Ex – the executor, R – the reader, L – the librarian, P – the person [2]

40

Analysis of the TFM indicates that it has one input vertex – functional feature 1 – that

specifies an event of arriving of a person that will start interaction with the system. Additionally,

we can see that the TFM has four output functional features (marked with “*”) – 5 “Informing

about the Registration of a Person”, 8 “Issuing the ReaderCard to a Person”, 23 “Imposing a

fine”, and 25 “Sending a Book”.

Analysis of the domain objects that are used in the system shown that several of them may

contain confidential personal data (protectable information assets). They are a ReaderCard, a

Registration, a ReaderAccount, a Person and a Fine.

According to principles P1 and P2, the analysis of input and output functionality must be

done. First, we must check whether these domain objects are used in the input and output

functional features. Functional features 1, 5, and 8 include the object Person. However,

functional feature 1 represents an external functionality and is out of the scope. Functional

feature 5 includes also the object Registration. Functional feature 8 includes the object

ReaderCard. Functional feature 23 includes the object Fine. Analysis of other functional features

shows that there is a function for checking the authentication of the visitor (feature 3) where both

objects Registration and Person are included.

According to principle P3, an analysis of the functionality that saves the password must be

done. Looking at the TFM, it is visible that the password is saved as a part of the created

ReaderAccount in functional feature 6.

Summarizing the result of this small analysis the following mappings from the required secure

design principles to functional features can be specified:

• One-to-many: P2 to functional features 5, 8, and 23.

• One-to-one: P1 to functional feature 3; and P3 to functional feature 6.

Thus, one can specify the corresponding security requirements (Figure 3) and map them to the

functional features defined (Figure 4). SR1 comes from the secure design policy represented by

P1, SR2 – from the secure design policy represented by P2 as well as General Data Protection

Regulation (GDPR), and SR3 – from the secure design policy represented by P3 and GDPR.

Correspondingly, SR2 is referred to the set of functional features {5, 8, 3}, SR1 to functional

feature 3, and SR3 to functional feature 6.

Figure 3. Security Requirements according to the defined principles

Figure 4. Mappings from security requirements to functional features

id descr SC As Mrs Src thr cnsq risk kind

SR1
Input data must be validated

before processing
Process Registration, Person

Validation

procedure

Secure design

policy

inserting malicious

data

can be start of

killchain
medium attack

SR2
Output data must be checked for

not breaking the confidentiality
Process

Registration,

ReaderCard, Fine
Filtering

Secure design

policy, GDPR

exposing

confidential data

leak of

personal data
medium privacy

SR3
A password must be encrypted

before saving

Persistent

data
ReaderAccount Encryption

Secure design

policy, GDPR

exposing

confidential data

leak of

personal data
medium privacy

id descr id descr

SR2

Output data must be checked for not breaking

the confidentiality 5 Informing about the Registration of a Person

SR2

Output data must be checked for not breaking

the confidentiality 8 Issuing the ReaderCard to a Person

SR2

Output data must be checked for not breaking

the confidentiality 23 Imposing a Fine

SR1
Input data must be validated before processing

3 Checking the Registration of a Reader

SR3
A password must be encrypted before saving

6 Creating a ReaderAccount

NRFs FF

41

Although security requirements have properties different from other non-functional

requirements, they still can be mapped onto the TFM functional features. Thus, TFM as a

reference model allows the showing of required functionality and its non/extra-functional

characteristics including security requirements already at the stage of domain modeling and

analysis. Besides, the analysis of needed security requirements may also include an assessment

of risks.

5 Conclusion

Security requirements concern the provision of confidentiality, integrity, availability, and privacy

of information assets. In this article the concept of a formal reference model, the topological

functioning model, is presented. The topological functioning model is a mathematical model that

can be used for referencing functional and non-functional requirements including security

requirements. Besides, its formal nature and holistic representation of a domain suggest using

formal analytical means for security requirements analysis and specification. Thanks to the

continuous mapping between graphs (that can be called trace models), dependencies among

existing processes and their implementation in analytical, design and code elements are explicit.

Formal tracing of security requirements onto the TFM functional features allows tracing them

forward to design and code constructs and backward to the sources of origin, discovering

possible incompleteness and conflicts in software requirements during the problem analysis and

design activities. Additionally, the TFM can be used as an analytical means for discovering

dependent or affecting functionality and functionality limitations.

Implementation of the presented approach and integration of it with the existing toolset is the

future research direction. Besides, perspectives of using TFM for modeling malicious behavior

also should be investigated.

References

[1] L. Liu, “Security and Privacy Requirements Engineering Revisited in the Big Data Era,” in 2016 IEEE 24th

International Requirements Engineering Conference Workshops (REW), Sep. 2016, pp. 55–55. Available:

https://doi.org/10.1109/REW.2016.023

[2] E. Nazaruka and J. Osis, “The Topological Functioning Model as a Reference Model for Software

Functional and Non-functional Requirements,” in 13th International Conference on Evaluation of Novel

Approaches to Software Engineering (ENASE 2018), vol. 1, 2018, pp. 467–477. Available:

https://doi.org/10.5220/0006811204670477

[3] E. Nazaruka and J. Osis, “The Formal Reference Model for Software Requirements,” in Evaluation of Novel

Approaches to Software Engineering. ENASE 2018. Communications in Computer and Information Science,

vol. 1023, E. Damiani, G. Spanoudakis, and L. Maciaszek, Eds. Springer, 2019, pp. 352–372. Available:

https://doi.org/10.1007/978-3-030-22559-9_16

[4] S. Turpe, “The Trouble with Security Requirements,” in 2017 IEEE 25th International Requirements

Engineering Conference (RE), Sep. 2017, pp. 122–133. Available: https://doi.org/10.1109/RE.2017.13

[5] I. Nigmatullin, A. Sadovykh, N. Messe, S. Ebersold, and J.-M. Bruel, “RQCODE – Towards Object-

Oriented Requirements in the Software Security Domain,” in 2022 IEEE International Conference on

Software Testing, Verification and Validation Workshops (ICSTW), Apr. 2022, pp. 2–6. Available:

https://doi.org/10.1109/ICSTW55395.2022.00015

[6] Q. Rouland, B. Hamid, J.-P. Bodeveix, and M. Filali, “A Formal Methods Approach to Security

Requirements Specification and Verification,” in 2019 24th International Conference on Engineering of

Complex Computer Systems (ICECCS), Nov. 2019, pp. 236–241. Available:

https://doi.org/10.1109/ICECCS.2019.00033

[7] D. Mellado, E. Fernández-Medina, and M. Piattini, “Applying a Security Requirements Engineering

Process,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence

https://doi.org/10.1109/REW.2016.023
https://doi.org/10.5220/0006811204670477
https://doi.org/10.1007/978-3-030-22559-9_16
https://doi.org/10.1109/RE.2017.13
https://doi.org/10.1109/ICSTW55395.2022.00015
https://doi.org/10.1109/ICECCS.2019.00033

42

and Lecture Notes in Bioinformatics), 2006, vol. 4189 LNCS, pp. 192–206. Available:

https://doi.org/10.1007/11863908_13

[8] L. Yin and F.-L. Qiu, “A novel method of security requirements development integrated common criteria,”

in 2010 International Conference On Computer Design and Applications, Jun. 2010, vol. 5, pp. V5–531–

V5–535. Available: https://doi.org/10.1109/ICCDA.2010.5541109

[9] I. A. Tøndel, J. Jensen, and L. Røstad, “Combining Misuse Cases with Attack Trees and Security Activity

Models,” in 2010 International Conference on Availability, Reliability and Security, Feb. 2010, pp. 438–

445. Available: https://doi.org/10.1109/ARES.2010.101

[10] A. Nhlabatsi et al., “Managing Security Control Assumptions Using Causal Traceability,” in 2015

IEEE/ACM 8th International Symposium on Software and Systems Traceability, May 2015, pp. 43–49.

Available: https://doi.org/10.1109/SST.2015.14

[11] Z. Zhioua, Y. Roudier, and R. B. Ameur, “Formal Specification and Verification of Security Guidelines,” in

2017 IEEE 22nd Pacific Rim International Symposium on Dependable Computing (PRDC), Jan. 2017, pp.

267–273. Available: https://doi.org/10.1109/PRDC.2017.51

[12] Q. Ramadan, M. Salnitriy, D. Struber, J. Jurjens, and P. Giorgini, “From Secure Business Process Modeling

to Design-Level Security Verification,” in 2017 ACM/IEEE 20th International Conference on Model Driven

Engineering Languages and Systems (MODELS), Sep. 2017, pp. 123–133. Available:

https://doi.org/10.1109/MODELS.2017.10

[13] C. Ponsard, J.-C. Deprez, and R. Darimont, “Formalizing Security and Safety Requirements by Mapping

Attack-Fault Trees on Obstacle Models with Constraint Programming Semantics,” in 2020 IEEE Workshop

on Formal Requirements (FORMREQ), Aug. 2020, pp. 8–13. Available:

https://doi.org/10.1109/FORMREQ51202.2020.00009

[14] M. Quamara, G. Pedroza, and B. Hamid, “Multi-layered Model-based Design Approach towards System

Safety and Security Co-engineering,” in Companion Proceedings - 24th International Conference on Model-

Driven Engineering Languages and Systems, MODELS-C 2021, 2021, pp. 274–283. Available:

https://doi.org/10.1109/MODELS-C53483.2021.00048

[15] D. Tsoukalas, M. Siavvas, M. Mathioudaki, and D. Kehagias, “An Ontology-based Approach for Automatic

Specification, Verification, and Validation of Software Security Requirements: Preliminary Results,” in

2021 IEEE 21st International Conference on Software Quality, Reliability and Security Companion (QRS-

C), Dec. 2021, pp. 83–91. Available: https://doi.org/10.1109/QRS-C55045.2021.00022

[16] J. J. Olthuis, R. Jordão, F. Robino, and S. Borrami, “VrFy: Verification of Formal Requirements using

Generic Traces,” in 2021 IEEE 21st International Conference on Software Quality, Reliability and Security

Companion (QRS-C), Dec. 2021, pp. 177–183. Available: https://doi.org/10.1109/QRS-C55045.2021.00034

[17] W. Wang, F. Dumont, N. Niu, and G. Horton, “Detecting Software Security Vulnerabilities Via

Requirements Dependency Analysis,” IEEE Transactions on Software Engineering, vol. 48, no. 5, pp.

1665–1675, May 2022, Available: https://doi.org/10.1109/TSE.2020.3030745

[18] C. Schmitt and P. Liggesmeyer, “Instantiating a model for structuring and reusing security requirements

sources,” in 2015 IEEE 2nd Workshop on Evolving Security and Privacy Requirements Engineering

(ESPRE), Aug. 2015, pp. 25–30. Available: https://doi.org/10.1109/ESPRE.2015.7330164

[19] J. Osis and E. Asnina, “Topological Modeling for Model-Driven Domain Analysis and Software

Development : Functions and Architectures,” in Model-Driven Domain Analysis and Software Development:

Architectures and Functions, Hershey, PA: IGI Global, 2011, pp. 15–39. Available:

https://doi.org/10.4018/978-1-61692-874-2.ch002

[20] E. Asnina and J. Osis, “Computation Independent Models: Bridging Problem and Solution Domains,” in

Proceedings of the 2nd International Workshop on Model-Driven Architecture and Modeling Theory-Driven

Development, 2010, pp. 23–32. Available: https://doi.org/10.5220/0003043200230032

[21] J. Osis, E. Asnina, and A. Grave, “Computation Independent Representation of the Problem Domain in

MDA,” e-Informatica Software Engineering Journal, vol. 2, no. 1, pp. 29–46, 2008.

[22] J. Osis and E. Asnina, “Is Modeling a Treatment for the Weakness of Software Engineering?,” in Model-

Driven Domain Analysis and Software Development, Hershey, PA: IGI Global, 2011, pp. 1–14. Available:

https://doi.org/10.4018/978-1-61692-874-2.ch001

https://doi.org/10.1007/11863908_13
https://doi.org/10.1109/ICCDA.2010.5541109
https://doi.org/10.1109/ARES.2010.101
https://doi.org/10.1109/SST.2015.14
https://doi.org/10.1109/PRDC.2017.51
https://doi.org/10.1109/MODELS.2017.10
https://doi.org/10.1109/FORMREQ51202.2020.00009
https://doi.org/10.1109/MODELS-C53483.2021.00048
https://doi.org/10.1109/QRS-C55045.2021.00022
https://doi.org/10.1109/QRS-C55045.2021.00034
https://doi.org/10.1109/TSE.2020.3030745
https://doi.org/10.1109/ESPRE.2015.7330164
https://doi.org/10.4018/978-1-61692-874-2.ch002
https://doi.org/10.5220/0003043200230032
https://doi.org/10.4018/978-1-61692-874-2.ch001

43

[23] E. Asnina, “The Computation Independent Viewpoint: a Formal Method of Topological Functioning Model

Constructing,” Applied Computer Systems, vol. 26, pp. 21–32, 2006.

[24] J. Osis, E. Asnina, and A. Grave, “MDA oriented computation independent modeling of the problem

domain,” in Proceedings of the 2nd International Conference on Evaluation of Novel Approaches to

Software Engineering – ENASE 2007, 2007, pp. 66–71. Available:

https://doi.org/10.5220/0002584500660071

[25] J. Osis, E. Asnina, and A. Grave, “Formal Problem Domain Modeling within MDA,” in Software and Data

Technologies: Second International Conference, ICSOFT/ENASE 2007, Barcelona, Spain, July 22-25, 2007,

Revised Selected Papers, J. Filipe, B. Shishkov, M. Helfert, and L. A. Maciaszek, Eds. Berlin, Heidelberg:

Springer, 2008, pp. 387–398. Available: https://doi.org/10.1007/978-3-540-88655-6_29

[26] A. Šlihte and J. Osis, “The Integrated Domain Modeling: A Case Study,” in Databases and Information

Systems: Proceedings of the 11th International Baltic Conference (DB&IS 2014), 2014, pp. 465–470.

[27] E. Asnina and V. Ovchinnikova, “Specification of decision-making and control flow branching in

Topological Functioning Models of systems,” in Proceedings of the 10th International Conference on

Evaluation of Novel Approaches to Software Engineering – MDI4SE, pp. 364–373, 2015. Available:

https://doi.org/10.5220/0005479903640373

[28] J. Osis and E. Asnina, “Derivation of Use Cases from the Topological Computation Independent Business

Model,” in Model-Driven Domain Analysis and Software Development, Hershey, PA: IGI Global, 2011, pp.

65–89. Available: https://doi.org/10.4018/978-1-61692-874-2.ch004

[29] U. Donins, J. Osis, A. Slihte, E. Asnina, and B. Gulbis, “Towards the refinement of topological class

diagram as a platform independent model,” in Proceedings of the 3rd International Workshop on Model-

Driven Architecture and Modeling-Driven Software Development, MDA and MDSD 2011, in Conjunction

with ENASE 2011, 2011, pp. 79–88.

[30] J. Osis and U. Donins, “Formalization of the UML Class Diagrams,” in Evaluation of Novel Approaches to

Software Engineering, New York: Springer, Berlin, Heidelberg, 2010, pp. 180–192. Available:

https://doi.org/10.1007/978-3-642-14819-4_13

[31] J. Osis and E. Asnina, “Enterprise Modeling for Information System Development within MDA,” in

Proceedings of the 41st Annual Hawaii International Conference on System Sciences (HICSS 2008), Jan.

2008, pp. 490–490. Available: https://doi.org/10.1109/HICSS.2008.150

[32] J. Osis and E. Asnina, “A Business Model to Make Software Development Less Intuitive,” in 2008

International Conference on Computational Intelligence for Modelling Control & Automation, 2008, pp.

1240–1245. Available: https://doi.org/10.1109/CIMCA.2008.52

[33] E. Asnina, B. Gulbis, J. Osis, G. Alksnis, U. Donins, and A. Slihte, “Backward requirements traceability

within the topology-based model driven software development,” in Proceedings of the 3rd International

Workshop on Model-Driven Architecture and Modeling-Driven Software Development, MDA and MDSD

2011, in conjunction with ENASE 2011, 2011, pp. 36–45.

https://doi.org/10.5220/0002584500660071
https://doi.org/10.1007/978-3-540-88655-6_29
https://doi.org/10.5220/0005479903640373
https://doi.org/10.4018/978-1-61692-874-2.ch004
https://doi.org/10.1007/978-3-642-14819-4_13
https://doi.org/10.1109/HICSS.2008.150
https://doi.org/10.1109/CIMCA.2008.52

