
Complex Systems Informatics and Modeling Quarterly (CSIMQ) 

eISSN: 2255-9922 

Published online by RTU Press, https://csimq-journals.rtu.lv 

Article 179 , Issue 32, September/October 2022, Pages 28–43 

https://doi.org/10.7250/csimq.2022-32.02 

Security Requirements Specification and Tracing 

within Topological Functioning Model 

Erika Nazaruka* 

Department of Applied Computer Science, Riga Technical University, 10 Zunda 

Embankment, Riga, LV-1048, Latvia 

erika.nazaruka@rtu.lv 

 

Abstract. Specification and traceability of security requirements is still a 

challenge since modeling and analysis of security aspects of systems require 

additional efforts at the very beginning of software development. The 

topological functioning model is a formal mathematical model that can be used 

as a reference model for functional and non-functional requirements of the 

system. It can also serve as a reference model for security requirements. The 

purpose of this study is to determine the approach to how security requirements 

can be specified and traced using the topological functioning model. This article 

demonstrates the suggested approach and explains its potential benefits and 

limitations. 

Keywords: Security Requirements, Requirements Traceability, System 

Modeling, Topological Functioning Model, Reference Model. 

1 Introduction 

Security requirements refer to providing confidentiality, integrity, and availability of information 

assets. Over time, the concept of integrity of data has transformed into the concept of 

trustworthiness of data [1]; and the confidentiality of data has become more focused on the 

requirement of data privacy. Security requirements derive from domain-related and technology-

related legal and regulatory documents. As Liu mentions [1], for handling security requirements, 

several groups of modeling and analysis approaches exist – goal-based, scenario-based, semi-

formal, and formal models as well as ontologies and patterns. Each of the groups has its own 

purpose and advantages in certain cases. 

Security requirements analysis and specification is a very specific issue. It has no large 

elaboration with the Model-driven Architecture (MDA). The MDA is a set of principles, models, 

and viewpoints that are dedicated to more formal and automated development of software 

systems. The main principle applied within the MDA is a separation of concerns. Thereof, each 

model reflects a viewpoint on the system from one certain concern: computation independent, 
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platform independent, and platform specific. Requirements for the system and a domain model 

are linked with the computation-independent viewpoint and, correspondingly, model. How to 

represent security requirements within it is a question. Two opportunities, potentially, are visible: 

either as a separate model or as references to an external element (i.e., a requirement). This 

article focuses on the second opportunity. 

The goal of this research is to evaluate the suitability of a Topological Functioning Model 

(TFM) for referencing security requirements as well as perspectives of this model to be used as 

an aid for the analysis of potential security threats. This article continues the research started 

earlier [2], [3] and focuses on referencing security requirements. Previous articles ([2] and [3]) 

focused on demonstrating the capabilities of the TFM as a central reference model for model-

based software development. Thanks to the formal mathematical background of the TFM and 

mappings between the TFM and functional requirements and the TFM and elements of a logical 

design model, it was possible to extrapolate the same reference principles to the non-functional 

requirements, such as performance requirements. However, [2] and [3] did not address the main 

issue of this article about references to security requirements. 

To understand the suitability of the TFM for referencing security requirements, the following 

research methodology was used:  

1. First, the systematic literature review on security requirements traceability from 

specification to logical design models to code elements (together with other functional and 

non-functional requirements) is done. For having more complete coverage of the existing 

approaches, the following search criteria were used: 

• Language – English; 

• Publishing year – approximately last 15 years, i.e., from 2007 to 2022 (including); 

• Keywords – from combinations of at least two categories: general and domain, 

domain and specific; 

• Publication database – IEEE Xplore Digital Library. 

The found information sources were filtered additionally by their relevance to the research 

questions (Section 2). As a result, the classification of the traceability approaches with their 

strengths and weaknesses was created.  

2. Second, the suitability of the TFM for referencing security requirements forward and 

backward was analyzed theoretically. As a result, the proper internal structure of the model 

was refined.  

3. Third, the application of the theoretical results was illustrated and the validity of the results 

was explained. 

The article is organized as follows. Section 2 provides a short overview of the related work on 

the specification of security requirements. Section 3 gives, shortly, the background information 

about TFM and its use as a formal reference model. Section 4 describes referencing security 

requirements using the TFM. Section 5 illustrates the proposed approach and its properties. 

Reflections on the applicability of the TFM for referencing security requirements conclude the 

article. 

2 Related Work on Security Requirements Specification and Traceability 

The issue of security requirements specification in analysis and design models has existed for a 

long time and has not lost its importance after the appearance and evolution of the MDA and 

model-driven development. There are multiple approaches for the analysis and design of security 

requirements, where security can be an entire single object or a part of the object of the analysis 

and design [4]. Security requirements may be specified separately or as a part of a software 

model. Proper specification and established forward/backward traceability mechanisms can 

make verification of security requirements and change impact analysis more predictable. The 

open questions analyzed in related works are the followings:  
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• Q1. What are the benefits and limitations of different approaches for the specification of 

security requirements including traceability mechanisms? 

• Q2. How forward traceability from security requirements to the design model to code 

elements is implemented, and what are its benefits and limitations? 

• Q3. How backward traceability from code elements to the design model to security 

requirements is implemented, and what are its benefits and limitations? 

The publication database, mentioned in the introduction, was searched for scientific 

publications on security requirements referencing (specification and traceability). The keywords 

used were the following: ((security requirement* AND model* AND referenc*) OR (security 

requirement* AND traceability) OR (security requirement* AND tracing) OR (security 

requirement* AND specification) AND (security requirement* AND verification)), where “*” 

represents any possible ending of the word. In the beginning, 650 papers were returned by this 

request, 58 of them were found relevant by the title, 47 of them where found relevant by the 

abstract, and first 10 of them were found to be relevant by the content quality and presented 

details were analyzed. To extend the number of information sources about the use of reference 

models, the request ((security requirement* AND model* AND referenc*) was searched by 

Google and found information sources were filtered by relevance, content, and presentation 

quality. As a result, 4 more papers were reviewed. The considered sources cover those  

specification, referencing and traceability approaches that are most commonly cited.  

2.1 Benefits and Limitations of Specification Approaches 

Approaches for security requirements specification may be grouped into formal, semi-formal and 

informal ones.  

Formal approaches. The formal approaches are the most non-ambiguous, since they apply 

mathematical logic or programming language principles. They allow using descriptive text in a 

natural language only as a reference to the original formulation of the security requirement. 

Thus, the approach presented in [5] in 2022, represents requirements as code, namely, as object-

oriented (OO) class templates. The presentation as OO classes benefits from OO principles: 

generalization and inheritance (eliminated redundancy), improved maintainability, combinations 

with formal notations (logic), OO analysis, and integration with DevOps tools and processes. 

However, many open questions on specification of multiple quality attributes, types of security 

requirements (positive/negative, functional/non-functional), and unclear applicability for 

industrial case studies still exist. Besides, such specification is far from a human-readable 

format. Another approach, the UML-like approach with logic, presented in [6] in 2018, uses 

first-order logic and meta-modeling for the definition of the main principles of specification of 

security requirements within the model. The security requirements are specified as properties 

that supplement the modeled system. Corresponding security policies are assigned to the 

properties. The main drawback, mentioned by the authors of this approach, is a lack of explicit 

traceability from requirements to model elements to code. 

Despite the formalism used, complexity of such specifications requires additional knowledge 

of developers and manual or partially automated activities for requirements in natural language 

formalization and their dependency discovery. 

Semi-formal approaches. Semi-formal approaches use a combination of formal means and 

natural language, where the latter plays a supplementing role for different diagrams or models. 

Therefore, the required information can be kept as within as separately from models/diagrams. 

Semi-formal approaches form the largest group of approaches. Below, they are analyzed in 

chronological order. 

From 2006 to 2009. One representative of in-model specification is the security requirements 

engineering method where use cases and misuse cases are combined together in order to make 

proper analysis and modeling of threats, attacks, and risks presented by Mellado et al. [7] in 

2006. The benefits of this method relate to using understandable notation and means of the 
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requirements engineering. Such specification is well-observable but lacks a representation of the 

sources of security requirements.  

From 2010 to 2019. The method proposed by Yin and Qiu [8] in 2010, suggests that security 

requirements will be specified at three levels (or steps of the method): in the i*-model, as 

formally specified policy, and as a use case scenario in UML. This means that here security 

requirements will be incorporated into the model of the system.  

Tøndel et al. (2010) explain the use of UML activity diagrams and use case models for 

specification and analysis of misuse cases [9]. The general idea is to combine misuse cases with 

attack trees and security activity models thus improving the analysis of potential attacks and 

threats. In reality, the security model is integrated with certain parts of the system model. Thus, 

this approach also can be considered as an in-model specification.  

Nhlabatsi et al. [10] in 2015, presented an approach that specifies security requirements in 

natural language. Then, these requirements are related to security controls by explicit traceability 

links called causal traces. The approach is based on the correct definition of assumptions. The 

weaker assumptions are discarded. This example can be considered as a non in-model 

specification of security requirements. 

Zhioua et al. [11] in 2017 published their vision on security requirements. In their approach 

security requirements specified in natural language are manually transformed into a formal 

representation (similar to Java programming language) by a security expert. The security expert 

extracts key elements and builds formulas and patterns on the chosen formalism. Security 

guidelines and requirements can be modeled in form of a sequence of atomic propositions or 

statements that represent the behavior of the system. The program is modeled by using the 

Program Dependence Graph which represents both control and data dependencies. The mapping 

between the abstract propositions and the program model is managed in the security knowledge 

base. The main weaknesses of the approach are manual activities: manual extraction of key 

elements from security requirements and guidelines; and manual establishing of mappings 

among elements. Since the proposed approach is manual, it lacks explicit traceability. This 

example can be considered as a non in-model specification of security requirements. 

One more interesting in-model approach is presented by Ramadan et al. in 2017, where the 

authors describe the use of Business Process Model and Notation (BMPN) for the specification 

of design-level security verification [12]. High-level requirements are specified in SecBPMN2 

language and translated to secure architectural models in UMLsec. SecBPMN2 uses 11 security 

annotations to BPMN elements. In turn, UMLsec is the UML supplemented with security 

specific “stereotypes” and “tags”. Automated acquisition of code is possible in the case of the 

development of proper transformation modules. The authors highlighted that their framework 

can be used for automatically establishing traceability between high-level security requirements 

and technical security policies and the flow of threatening activities. The use of BPMN allows 

negotiating with the domain experts; and automatically obtained UML sequence diagrams allow 

proper implementation by the developers. However, human errors can be entered at the very 

beginning of modeling. 

Another approach, presented by Emeka and Liu in 2018, considers requirements specification 

using controlled formal language SOFL (Structured Object-oriented Formal Language) with 

mandatory pre and post conditions for dependency analysis and CDFD (Conditional Data Flow 

Diagrams) automated construction. However, the manual transformation of textual requirements 

into SOFL and then from CDFD to attack trees requires experts participation. This example can 

be considered as a non in-model specification of security requirements. 

From 2020 to 2022. Ponsard et al. [13] in 2020, presented their vision of using a KAOS 

model. Security and safety requirements are expressed using principles of Goal Oriented 

Requirements Engineering. Mappings between a KAOS model and constraint programming 

elements are set manually. The formal semantics is based on temporal logic and a formal pattern 

library. The approach allows automated analyzing of multi-parameters of security in high-level 

design models. The main limitations are the granularity and rounding of calculation that may 
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cause the incorrectness of mappings as well as one-level traceability. This example can be 

considered as an in-model specification of security requirements. 

Quamara et al. proposed in 2021 a modeling framework for security requirements [14] that has 

three layers: a mission layer that is used for capturing what is needed to be achieved by the 

system; a functional layer that is used for capturing how to achieve what is needed to be achieved 

by the system; and an architectural layer that is used for capturing which elements can finally 

realize the “what” and “how”. In such a way formalization of both model and security 

properties is achieved. Semi-formal constructs of UML are used for graphical representation of 

the architecture, functions, and mission. Formal constructs are used for specification, reasoning, 

and verification of properties as First-Order Logic expressions but are not limited to them. This 

example can be considered as an in-model specification of security requirements.  

Tsoukalas et al. [15] in 2021, presented their vision of the Security-by-design approach. In this 

approach, textual security requirements are processed using Natural Language Processing 

techniques defining such classifiers as Project, Priority, Security Characteristic, Action, Actor, 

Object and Property. Class Requirement and sub-class structures for classifiers are used. Each 

requirement is represented as a JSON object. Syntactical and semantical similarities are analyzed 

for classes with the same (or having similar meaning) classifiers using the ontology WordNet. 

One of the benefits is the ability to create the Security Requirements Knowledge base and use it 

for automated searching for similar or additional requirements and suggestions of alternatives. 

The main drawback is that this approach requires the participation of security experts for results 

validation. Besides, it cannot handle interconnected, overlapping, and redundant requirements. 

This example can be considered as a non in-model specification of security requirements. 

Olthuis et al. [16] in 2021, presented their approach that uses generated (generic) traces. In 

this approach, requirements in natural language are manually transformed into formal language 

LTL stored in JSON files. Then, traces are generated in the common trace format (CTF). Such 

representation allows executing, design, and verifying requirements prior to their 

implementation. However, the representation of requirements and traces are not user-friendly. 

This example can be considered as a non in-model specification of security requirements. 

Semi-automatic semantic and probability analysis is presented by Wang et al. in 2022 [17]. 

Here, high-level security requirements can be traced horizontally and vertically in an automated 

way by using manually determined “indicators” of input, time, task refinement, triggering 

conditions, and realization similarities with rather high recall value. The indicators are reusable. 

The manual identification of indicators in high-level security requirements and the focus only on 

textual requirements are the main mentioned weaknesses. This example can be considered as a 

non in-model specification of security requirements. 

As rightly noted in the article [12], BPMN and UML based approaches address security in the 

development phases without a proper alignment to sources of security requirements and to the 

requirements themselves. Both approaches – the in-model specification of security requirements 

and referring to the externally kept security requirements and their sources – are useful. The 

advantages of the in-model specification are the direct link with the functional parts of the 

system and the possibility to “execute” the specification before its implementation. The out-of-

model specification also has its advantage, i.e., the specification of security requirements 

themselves may be integrated with threats, vulnerabilities, attack scenarios, risks, sources, and 

other factors. 

Looking at the tendencies before 2020, one can see that UML and BPMN modeling principles 

were used in most. Starting from 2020, one can conclude that today’s trend is on supplementing 

(or even replacing) modeling activities with Artificial Intelligence techniques, such as Natural 

Language Processing and Machine Learning Models. They allow elimination of manual 

activities of security experts on dependency analysis among security requirements and on 

verification of security requirements based on their descriptions, accepted security procedures, 

guidelines, and standards. 
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Informal approaches. Informal approaches are well-elaborated now and wide-spread in the 

IT industry, therefore are less presented among the scientific research results. They include such 

techniques as manual layering, key indicators, and manual informal specification and analysis of 

security requirements and trace links by using predefined security procedures and checklists. 

Their main weakness is that they require a long time for analysis of security requirements, their 

interdependencies and their impact on other related elements. As an example of such approaches, 

the classification of most reusable security requirements sources presented by Schmitt and 

Liggesmeyer [18] can be considered. It includes three elements: security information and 

knowledge (diagnostic and prescriptive), software requirements engineering (SRE) methods, and 

compliance obligations. The first two sources provide knowledge about threats, weaknesses, and 

vulnerabilities. The last source imposes raw requirements. All threats, weaknesses, 

vulnerabilities, and raw requirements must be analyzed together when specifying security 

requirements. The authors propose to define security requirements scope areas and then re-use 

those topic specific fragments from the sources during the analysis and specification of security 

requirements. In essence, the authors suggested creating a repository where all the sources of 

security requirements are organized in scope areas and each scope has sources from all the three 

categories. 

2.2 Forward and Backwards Traceability 

Not all of the considered research papers included detailed enough information on forward and 

backward traceability. There are different types of traceability mechanisms (Table1): direct 

tracing using OO principles for security requirements formalized specifications [5]; mapping 

rules in trace models [10], [12]; or theoretically proven mappings from design to programing 

language elements [15]. Most of the traceability mechanisms implement forward trace links from 

the security requirements origins (sources) to the formal representation or design elements. Just 

those using OO principles are forward traceable to code constructs [5], others are theoretically 

possible but exact implementation was not presented [10], [5] due to the focus of research on 

requirements verification and dependency analysis. 

Table 1. Forward traceability mechanisms and their limitations 

Approach Year Mechanism Limitations 

Requirement as 

Code [5] 
2022 Direct tracing via implementation 

A difficult-to-read format for 

non-technical stakeholders. 

Semantic and 

probability 

analysis [17] 2022 

Security requirements can be traced 

horizontally and vertically; five types of 

dependencies; 

Manual identification of 

indicators in high-level security 

requirements. Implementation of 

forward traceability to code 

elements is absent. 

Security-by-

Design [15] 
2021 

Theoretically it is possible to determine 

implementing classes by strict constructs 

actor-action-object. 

Implementation of forward 

traceability to code elements is 

absent. 

Generic traces 

[16] 
2021 

Matching traces are explicitly represented in 

a JSON file and match trace events to 

abstract propositions in the design 

specification. 

Implementation of forward 

traceability to code elements is 

absent. 

SecBMPN2 and 

UMLsec [12] 
2017 

Traceability (mapping rules in trace models) 

between high-level security requirements 

and verifiable technical security policies as 

well as, potentially, to code elements. 

Forward traceability to code 

elements is possible in the case of 

code generation. 

Causal 

traceability [10] 
2015 

Causal traces from the source artifact to the 

specification. 

Implementation of forward 

traceability to code elements is 

absent. 
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Looking at the same research for backward traceability, we see that in several cases the 

mechanism used differ (Table 2). Direct tracing allows using the same principles in forward and 

backward directions and has the same issues [5]. In the case of using trace models [11], 

backward traceability is possible when using trace logs of transformations and transformation 

modules are available. In the case of using some set of indicators for requirements verification or 

dependency analysis, backward traceability to the source of the requirement is established, but 

between different levels of implementation is not presented. 

Table 2. Backward traceability, its benefits and limitations 

Approach Year Mechanism Limitations 

Requirement as 

Code [5] 
2022 Direct tracing via implementation. 

A difficult-to-read format of 

security requirements for non-

technical stakeholders 

Semantic and 

probability 

analysis [17] 

2022 Five types of dependencies. 
Only dependencies at one level of 

security requirements 

Security-by-

Design [15] 
2021 

Reference to the initial requirement in 

natural language is explicit. 

Backward traceability from code 

constructs is absent. 

Generic traces 

[16] 
2021 

Matching traces are explicitly represented in 

JSON file and matches trace events to 

abstract propositions in design specification. 

Backward traceability from code 

constructs is absent. 

SecBMPN2 and 

UMLsec [12] 
2017 

Traceability (mapping rules in trace models) 

between high-level security requirements 

and verifiable technical security policies as 

well as, potentially, from code elements. 

Backward traceability from code 

elements is possible in the case of 

using automated transformation 

modules and tracing logs. 

Causal 

traceability [10] 
2015 

Causal traces from the specification to the 

source artifact. 

Backward traceability from code 

constructs is absent. 

In general, there are many approaches that researchers develop and suggest for security 

requirements specification and analysis to keep the relation with the original requirements or 

sources of those requirements, formalize specification of requirements in natural language in 

order to find inconsistencies among them and/or to implement them in design and code elements. 

The main focus now is on the source-requirement-design chain. Specification of security 

requirements concerns also behavioral (functional) characteristics of the system and links 

security-related limitations to them. Specification of those links can be implemented as an in-

model or out-of-model solution. However, establishing traceability links from security 

requirements sources to code elements and backward is less developed. The largest part of the 

research focuses on the “source- formal specification” path and rarely to the “design element”. 

Besides, tracing from design elements to code elements is not described. 

In this article, the application of TFM as a reference model and traceability principles of 

topological functioning modeling are described. The presented approach is one of the in-model 

specification approaches and inherits the same benefits and limitations. However, thanks to the 

formal and holistic nature of the TFM, it includes also “trace models” between informal 

specifications and formal elements of analysis, design, and implementation. It opens an 

opportunity to leverage the advantages of element direct tracing. 

3 TFM as a Reference Model for Requirements 

This section describes the main elements of the TFM and the main concepts of the topological 

functioning modeling starting from the essential TFM constructs and ending with known 

capabilities of this model for transformation into other software development artifacts. 
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3.1 Topological Functioning Model in Brief 

The TFM is a formal mathematical model. Its main purpose is to facilitate understanding and 

analysis of the functionality of systems of any type – business, software, biological, mechanical, 

and so on [19]. The TFM represents the modeled functionality as a digraph (𝑋, Θ), where X is a 

set of inner functional characteristics (further called functional features) of the system, and Θ is a 

topology set on these characteristics in a form of a set of cause-and-effect relations. Topological 

functioning models are comparable just like any digraphs. This property may be used to analyze 

similarities and differences among TFMs using a continuous mapping mechanism [20]. Since the 

1990s the TFM is being elaborated for software development [21], at the beginning within the 

object-oriented paradigm and, later, within the model-driven development.  

The TFM is characterized by the topological and functioning properties [22]. The topological 

properties are connectedness, neighborhood, closure, and continuous mapping. The functioning 

properties are cause-and-effect relations, cycle structure, inputs, and outputs. The composition of 

the TFM is presented in detail in [19]. In brief, it could be manual with the starting point in 

informal textual descriptions as within TFM4MDA (TFM for Model Driven Architecture) 

explained in multiple sources [23]–[25] and semi-automated with the starting point in use case 

scenarios as in the IDM toolset [26]. 

The main TFM construct is a functional feature (FFi) that represents system’s functional 

characteristic, e.g., a business process, a task, an action, or an activity [22]. It can be specified by 

a unique tuple (1). 

  

 FFi = <A, R, O, PrCond, PostCond, Pr, Ex>, where 𝐹𝐹𝑖  ∈ 𝑭𝑭                      (1) 

 

Where tuple elements are as follows [19]: 

• A is an object’s action,  

• R is a set of results of the object’s action (it is an optional element),  

• O is an object that gets the result of the action or a set of objects that are used in this action,  

• PrCond is a set of preconditions or atomic business rules,  

• PostCond is a set of post-conditions or atomic business rules,  

• Pr is a set of providers of the feature, i.e., entities (systems or sub-systems) which provide or 

suggest an action with a set of certain objects,  

• Ex is a set of executors (direct performers) of the functional feature, i.e., a set of entities 

(systems or sub-systems) that enact a concrete action. 

As was mentioned, TFM’s functional features have a topology over them in the form of 

cause-and-effect relations. The cause-and-effect relations between functional features define the 

cause from which the triggering of the effect occurs. The formal definition of the cause-and-

effect relations and their combinations are given in [27]. It states that a cause-and-effect relation 

is a binary relationship that links the cause functional feature to the effect functional feature. In 

fact, in many cases this relation indicates a control flow transition in the system. The cause-and-

effect relations (and their combinations) may be joined by the logical operators, namely, 

conjunction (AND), disjunction (OR), or exclusive disjunction (XOR). The logic of the 

combination of cause-and-effect relations denotes system behavior (e.g., decision making) and a 

flow of execution of system’s functions (e.g., in parallel or sequentially). 

The TFM can be manually, but following the precise rules, transformed into most used UML 

(Unified Modeling Language) diagram types: class diagrams, activity diagrams, use cases and 

their textual specifications [28]. Besides, it can be transformed into Topological UML’s [29] 

diagrams such as Topological Class diagrams, Topological Use Case diagrams, Activity 

diagrams, State Chart diagrams, and Sequence and Communication diagrams [30]. Thus, the 
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TFM holds all essential knowledge from the system’s domain that should be implemented in 

design models and source code. 

3.2 A Formal Reference Model 

A topological functioning model represents a certain system’s functionality formally. The 

question can be what the word “system” means in the topological functioning modeling. There 

are several definitions in the Oxford Learner’s Dictionary of the meaning of “a system”. For 

instance, a system is “a group of things, pieces of equipment, etc. that are connected or work 

together”, or “an organized set of ideas or theories or a particular way of doing something”†. 

Both definitions are true for topological functioning modeling. This means that the TFM can be 

used for modeling any system that is represented by a group of things that are connected to work 

together according to an organized set of rules. That means that the TFM can specify a business 

system, an information system of this business system, a software system of the information 

system and so on – systems and their sub-systems. On the other hand, the TFMs (as mentioned in 

section 3.1) can be compared for similarities and differences by using continuous mapping of 

topological spaces. This means that the mapping can be used to analyze the changes in case of 

introducing new functions or modifying the already existing ones. 

Therefore, if we consider distinguishing two domains – a problem and a solution, then we can 

speak about two systems – a system “AS IS” and a system “TO BE”, correspondingly. In the 

case of topological modeling of functioning, if the TFM “AS IS” represents an existing system, 

then the TFM “TO BE” is modified TFM “AS IS” obtained as a result of mapping from the 

requirements to the system “TO BE” onto the TFM “AS IS”. 

Functional requirements within the TFM. Mappings from functional requirements (FRs) 

onto the TFM functional features can be one-to-zero, one-to-one, one-to-many, many-to-many, 

many-to-one, and zero-to-one [2], [3], [31]–[33]: 

• One-to-one means that the functional requirement completely specifies one existing 

functional feature of the domain, for instance, the authorization of a registered user. 

• One-to-many, many-to-one, and many-to-many cases relate to situations when specifications 

of functional requirements and/or functional features are too decomposed. One-to-many and 

many-to-one are special cases of the relation type “many-to-many”. These cases can be 

caused by different levels of details in mapped elements. Such cases indicate and help in 

discovering decomposed, overlapping, or incomplete requirements. 

• One-to-zero and zero-to-one. These are cases of new / undefined /missed functionality either 

in the specification of requirements, or in the model of the system. The “one-to-zero” occurs 

when one functional requirement describes new (or undefined) functionality of the system 

that can cause modification of the system and its TFM. The “zero-to-one” occurs when the 

requirements specification does not contain any functional requirement corresponding to the 

already defined functional characteristics. This can indicate the functionality that either will 

not be implemented in the “target” system, is new, or is missed. The new functionality will 

require changes in the existing processes of the system. The missed functionality either is not 

mentioned in the requirements specification or will be changed but it is not explicitly 

expressed. 

As a result, mappings allow finding incomplete, additional, conflicting, unnecessary, as well 

as redundant functional requirements for the system functionality. 

At present, a functional requirement is specified as a tuple (2) of its identifier idFR and textual 

description descrFR. The textual description is not limited to its format, it could be modified if 

necessary. 

 FRi = < idFRi, descrFRi >, where 𝐹𝑅𝑖 ∈ 𝑭𝑹                                      (2) 

 
†  https://www.oxfordlearnersdictionaries.com/definition/english/system?q=systemType  

https://www.oxfordlearnersdictionaries.com/definition/english/system?q=system
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Then a mapping from a set of functional requirements to a set of functional features can be 

specified as a tuple (3), where properties of this mapping can also be indicated as Boolean 

variables isComplete for indicating completeness and isOverlapping for indicating overlaps [2], 

[3].  

 FR2FF = < FR, FF, isComplete, isOverlapping>                            (3) 

Non-functional requirements within the TFM. Non-functional requirements (NFRs) can be 

mapped onto the TFM functional feature or a set of features by providing referencing in a way 

similar to the specification of the corresponding FRs. The possible types of NFRs mappings onto 

the TFM are one-to-zero, one-to-one, one-to-many, many-to-many, many-to-one, and zero-to-

one [2], [3]: 

• One-to-one is when one non-functional requirement is related to the concrete functional 

feature and must be implemented in the corresponding entities. For instance, a functional 

feature specifies retrieving of some set of records for some period from the database and a 

non-functional feature specifies that the accomplishment of the request must not exceed 3 

milliseconds. 

• One-to-many is when one non-functional requirement is related to all noted functional 

features and must be implemented in all the corresponding entities. For instance, several 

functional features specify retrieving data from the database and some successive 

calculations, and a non-functional feature that specifies that accomplishment of the request 

to the database must not exceed 3 milliseconds. 

• Many-to-one is when more than one non-functional requirements are related to one noted 

functional feature and must be implemented in the corresponding entities. It could be 

considered  a special case of the many-to-many relationship. For instance, two non-

functional features specify the requirement for the language of the user interface and the 

requirement for the provided software interface. Both must be implemented in the input 

functional feature that specifies interaction with the users of the software. 

• One to zero. One non-functional requirement is not related to any functional feature and is 

not traceable in the model and the code. This indicates that this requirement is out of the 

scope of the model and, hence, out of the scope of the system planned. There could be two 

causes, i.e., either the requirement is not appropriate, or the model lacks the required 

functionality. The latter may indicate an incomplete analysis of the required functions that 

are new for the system where the software will run.  

• Zero to one. A functional feature is not related to any non-functional requirement. It is a 

reason to recheck the non-functional requirements. 

As a result, mappings allow extending the specification of functional characteristics of the 

system with non-functional attributes and find incomplete, additional, conflicting, and redundant 

requirements to the system. 

A non-functional requirement is specified as a tuple (4) of its identifier idNFR and textual 

description descrNFR, a dynamic characteristics DNFR that can be expressed as a value or as a 

function (e.g. D=f(p), where p is a parameter set of some function f), and a scope SCNFRi of non-

functional requirements. The scope may be a process, persistent data, or a whole system. The 

textual description is not limited to its format, it could be modified if necessary. 

NFRi = < idNFRi, descrNFRi, DNFRi, SCNFRi >, where 𝑁𝐹𝑅𝑖 ∈ 𝑵𝑭𝑹                  (4) 

Then a mapping from a set of non-functional requirements to a set of functional features can 

be specified as a tuple (5) for the general case many-to-many [2], [3].  

 NFR2FF = < NFR, FF>       (5) 

Security Requirements within the TFM. As mentioned before, security requirements are 

considered a part of a set of non-functional requirements. However, security requirements are 
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more complex since they cannot be expressed positively like, for instance, functional 

requirements. They represent negative conditions, actions, and scenarios. Therefore, their 

integrations with the TFM cannot be expressed using the tuple (4) of a non-functional 

requirement. This tuple must be extended to represent information that is very important for the 

understanding its origin, and essence as well as for further analysis. 

Therefore, the initial non-functional requirement’s tuple should be modified as shown in 

expression (6). The dynamic characteristics that are important for performance requirements can 

be excluded. The following elements are added to the specification of a security requirement SRi: 

a requirement’s identifier idSRi, a requirements textual explanation descrSRi, a scope SCSri of the 

requirement (the list of a process, a persistent data, or a whole system can be extended with other 

elements), a set As of information assets that should be protected, a set Mrs of measures that 

should be applied for assets protection, a set Srs of sources of this requirement, a threat thr, a 

textual description of consequences cnsq, an assessment of the associated risks, and the kind of 

this security requirement according to the predefined list – kind.  

SRi = < idSRi, descrSRi, SCSri, As, Mrs, Srs, thr, cnsq, risk, kind >, where 𝑆𝑅𝑖 ∈ 𝑵𝑭𝑹 (6) 

A mapping from a set of security requirements to a set of functional features is specified as the 

same tuple (5) for the general case many-to-many of non-functional requirements since security 

requirements are a subset of non-functional requirements. Mappings from the security 

requirements onto the TFM have the following meaning:  

• One-to-one is when a security requirement is linked to a certain functional feature and must 

be implemented in the corresponding design entities. For instance, when a certain validation 

of input data must be implemented before transferring data to processing. 

• One-to-many is when one security requirement is linked to all noted functional features and 

must be implemented in all the corresponding entities. For instance, when transferred data 

must be encrypted before transferring to the database. 

• Many-to-one as a special case of the many-to-many relationship is when more than one 

security requirement is linked to one noted functional feature and must be implemented in 

the corresponding entities. For instance, when validation of input data before and encryption 

of output data after must be implemented in the same function. 

• One to zero. A security requirement is not linked to any functional feature. This indicates 

that a model lacks its implementation. This case may indicate an incomplete analysis of the 

required functions of the system or some new functionality that is not but must be 

implemented.  

• Zero to one. A functional feature is not linked to any security requirement. This could be a 

correct case, but for input and output functional features this case must be re-checked. 

4 Illustrative Example 

Let us consider the example of the TFM for a library system. The TFM (Figure 1 and Figure 2) 

specifies the main functionality provided by the library, i.e. registering persons as readers, giving 

out and taking back the books as well as imposing a fine in case of damages to the book or the 

exceeded loan time.  

Let us assume that the task is to create new software that should support librarians’ work. The 

new software must implement three secure design principles – input data must be validated 

before processing (P1), output data must be checked for not breaking confidentiality (P2), and a 

password must be encrypted before saving (P3). 
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Figure 1. The topological functioning model (simplified) of the library operation [2] 

 

Figure 2. The specification of TFM functional features, where S – subordination, I – inner of the system, 

E – external to the system, Ex – the executor, R – the reader, L – the librarian, P – the person [2] 
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Analysis of the TFM indicates that it has one input vertex – functional feature 1 – that 

specifies an event of arriving of a person that will start interaction with the system. Additionally, 

we can see that the TFM has four output functional features (marked with “*”) – 5 “Informing 

about the Registration of a Person”, 8 “Issuing the ReaderCard to a Person”, 23 “Imposing a 

fine”, and 25 “Sending a Book”.  

Analysis of the domain objects that are used in the system shown that several of them may 

contain confidential personal data (protectable information assets). They are a ReaderCard, a 

Registration, a ReaderAccount, a Person and a Fine. 

According to principles P1 and P2, the analysis of input and output functionality must be 

done. First, we must check whether these domain objects are used in the input and output 

functional features. Functional features 1, 5, and 8 include the object Person. However, 

functional feature 1 represents an external functionality and is out of the scope. Functional 

feature 5 includes also the object Registration. Functional feature 8 includes the object 

ReaderCard. Functional feature 23 includes the object Fine. Analysis of other functional features 

shows that there is a function for checking the authentication of the visitor (feature 3) where both 

objects Registration and Person are included.  

According to principle P3, an analysis of the functionality that saves the password must be 

done. Looking at the TFM, it is visible that the password is saved as a part of the created 

ReaderAccount in functional feature 6.  

Summarizing the result of this small analysis the following mappings from the required secure 

design principles to functional features can be specified: 

• One-to-many: P2 to functional features 5, 8, and 23. 

• One-to-one: P1 to functional feature 3; and P3 to functional feature 6. 

Thus, one can specify the corresponding security requirements (Figure 3) and map them to the 

functional features defined (Figure 4). SR1 comes from the secure design policy represented by 

P1, SR2 – from the secure design policy represented by P2 as well as General Data Protection 

Regulation (GDPR), and SR3 – from the secure design policy represented by P3 and GDPR. 

Correspondingly, SR2 is referred to the set of functional features {5, 8, 3}, SR1 to functional 

feature 3, and SR3 to functional feature 6. 

 

Figure 3. Security Requirements according to the defined principles 

 

Figure 4. Mappings from security requirements to functional features 

id descr SC As Mrs Src thr cnsq risk kind

SR1
Input data must be validated 

before processing 
Process Registration, Person

Validation 

procedure

Secure design 

policy

inserting malicious 

data

can be start of 

killchain
medium attack

SR2
Output data must be checked for 

not breaking the confidentiality
Process

Registration, 

ReaderCard, Fine
Filtering

Secure design 

policy, GDPR

exposing 

confidential data

leak of 

personal data
medium privacy

SR3
A password must be encrypted 

before saving 

Persistent 

data
ReaderAccount Encryption

Secure design 

policy, GDPR

exposing 

confidential data

leak of 

personal data
medium privacy

id descr id descr

SR2

Output data must be checked for not breaking 

the confidentiality 5 Informing about the Registration of a Person

SR2

Output data must be checked for not breaking 

the confidentiality 8 Issuing the ReaderCard to a Person

SR2

Output data must be checked for not breaking 

the confidentiality 23 Imposing a Fine

SR1
Input data must be validated before processing 

3 Checking the Registration of a Reader

SR3
A password must be encrypted before saving 

6 Creating a ReaderAccount

NRFs FF
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Although security requirements have properties different from other non-functional 

requirements, they still can be mapped onto the TFM functional features. Thus, TFM as a 

reference model allows the showing of required functionality and its non/extra-functional 

characteristics including security requirements already at the stage of domain modeling and 

analysis. Besides, the analysis of needed security requirements may also include an assessment 

of risks. 

5 Conclusion 

Security requirements concern the provision of confidentiality, integrity, availability, and privacy 

of information assets. In this article the concept of a formal reference model, the topological 

functioning model, is presented. The topological functioning model is a mathematical model that 

can be used for referencing functional and non-functional requirements including security 

requirements. Besides, its formal nature and holistic representation of a domain suggest using 

formal analytical means for security requirements analysis and specification. Thanks to the 

continuous mapping between graphs (that can be called trace models), dependencies among 

existing processes and their implementation in analytical, design and code elements are explicit.  

Formal tracing of security requirements onto the TFM functional features allows tracing them 

forward to design and code constructs and backward to the sources of origin, discovering 

possible incompleteness and conflicts in software requirements during the problem analysis and 

design activities. Additionally, the TFM can be used as an analytical means for discovering 

dependent or affecting functionality and functionality limitations. 

Implementation of the presented approach and integration of it with the existing toolset is the 

future research direction. Besides, perspectives of using TFM for modeling malicious behavior 

also should be investigated. 
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