
Complex Systems Informatics and Modeling Quarterly (CSIMQ)

eISSN: 2255-9922

Published online by RTU Press, https://csimq-journals.rtu.lv

Article 174, Issue 31, June/July 2022, Pages 18–28

https://doi.org/10.7250/csimq.2022-31.02

A Literature Review on the Challenges of Applying Test-Driven

Development in Software Engineering

Daniel Staegemann*, Matthias Volk, Maneendra Perera,

Christian Haertel, Matthias Pohl, Christian Daase, and Klaus Turowski

Otto von Guericke University, Universitätsplatz 2, Magdeburg, 39106, Germany

{daniel.staegemann, matthias.volk, christian.haertel, matthias.pohl,
christian.daase, klaus.turowski}@ovgu.de, hetti.perera@st.ovgu.de

Abstract. Due to the ongoing trend of digitalization, the importance of software

for today’s society is continuously increasing. Naturally, there is also a huge

interest in improving its quality, which led to a highly active research community

dedicated to this aim. Consequently, a plethora of propositions, tools, and

methods emerged from the corresponding efforts. One of the approaches that

have become highly prominent is the concept of test-driven development (TDD)

that increases the quality of created software by restructuring the development

process. However, such a big change to the followed procedures is usually also

accompanied by major challenges that pose a risk for the achievement of the set

targets. In order to find ways to overcome them, or at least to mitigate their

impact, it is necessary to identify them and to subsequently raise awareness.

Furthermore, since the effect of TDD on productivity and quality is already

extensively researched, this work focuses only on issues besides these aspects.

For this purpose, a literature review is presented that focuses on the challenges of

TDD. In doing so, challenges that can be attributed to the three categories of

people, software, and process are identified and potential avenues for future

research are discussed.

Keywords: Test-Driven Development, TDD, Testing, Software Engineering,

Literature Review, Quality Assurance.

1 Introduction

Due to the ongoing trend of digitalization, the importance of software for today’s society is

continuously increasing [1]. Naturally, there is also a huge interest in improving its quality. This can

be achieved by enhancing the tools and methods used in software engineering as well as by creating

new ones. Consequently, there is a highly active research community dedicated to this task [2].

* Corresponding author

© 2022 Daniel Staegemann, Matthias Volk, Maneendra Perera, Christian Haertel, Matthias Pohl, Christian Daase, and Klaus

Turowski. This is an open access article licensed under the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/4.0).

Reference: D. Staegemann, M. Volk, M. Perera, Chr. Haertel, M. Pohl, Chr. Daase, and K. Turowski, “A Literature Review on the

Challenges of Applying Test Driven Development in Software Engineering,” Complex Systems Informatics and Modeling

Quarterly, CSIMQ, no. 31, pp. 18–28, 2022. Available: https://doi.org/10.7250/csimq.2022-31.02

Additional information. Author ORCID iD: D. Staegemann – https://orcid.org/0000-0001-9957-1003, M. Volk –

https://orcid.org/0000-0002-4835-919X, and M. Pohl – https://orcid.org/0000-0002-6241-7675. PII S225599222200174X.

Received: 15 June 2022. Revised: 21 July 2022. Accepted: 21 July 2022. Available online: 29 July 2022.

https://csimq-journals.rtu.lv/
mailto:daniel.staegemann@ovgu.de
mailto:matthias.volk@ovgu.de
mailto:christian.haertel@ovgu.de
mailto:matthias.pohl@ovgu.de
mailto:christian.daase@ovgu.de
mailto:klaus.turowski@ovgu.de
mailto:@ovgu.de
http://creativecommons.org/licenses/by/4.0
https://orcid.org/0000-0001-9957-1003
https://orcid.org/0000-0002-4835-919X
https://orcid.org/0000-0002-6241-7675

19

While this led to a plethora of propositions, one of the approaches that have become highly

prominent and will also be the subject of this article is the concept of test-driven development

(TDD). Instead of writing the productive code and subsequently testing it to assure its correctness,

as it is practiced in the traditionally applied test last development (TLD) approach, the tests are

written at first and the functionality is implemented afterwards [3]. This results in changes to the

software design and higher test coverage, which in turn lead to an improvement in the quality of

the developed application [4] but may result in lower initial productivity compared to TLD [5].

Those effects are especially noticeable in an industrial setting, which might be caused by larger

tasks and higher developer experience in contrast to academic settings [6].

However, such a big change to the followed procedures is usually also accompanied by major

challenges that pose a risk to the achievement of the set targets, as opposed to minor ones that

might just result in an inconvenience. To find ways to overcome the challenges, or at least mitigate

their impact, it is necessary to identify them and subsequently raise awareness. For this purpose,

here, a literature review is presented that focuses on the challenges of TDD. Therefore, the research

question discussed is as follows.

RQ: Which are the major challenges when applying test-driven development in software

engineering?

The results can act as a foundation for succeeding research endeavors that can build upon these

findings in the pursuit of determining ways to facilitate the application of TDD as well as to

increase its effectiveness. Furthermore, the explicit limitation to software engineering is due to the

fact that TDD also finds application in other domains such as ontology development [7], [8] and

process modeling [9]. However, these areas are out of the scope of this work and might, potentially,

be accompanied by different challenges.

The remainder of this work is structured as follows. After the introduction, the most relevant

concepts are briefly discussed in the background (Section 2), laying the foundation of a common

understanding. Afterwards, the review protocol for the literature review is outlined in Section 3.

This is succeeded, in Section 4, by a presentation of the papers that have been retrieved through

the search process. Their insights are aggregated and discussed in the ensuing Section 5. Finally,

a conclusion is given in Section 6, recapitulating the work, highlighting possible weaknesses of

the study, and proposing avenues for potential future research endeavors.

2 Background

As already mentioned in the introduction, previous research outlined that the application of TDD

generally leads to an improved quality of the developed application [4]. This is primarily based on

two aspects. On the one hand, through the increase of the test coverage that is associated with the

use of TDD, the likelihood to detect errors is improved. On the other hand, the application of TDD

also influences the design of the developed system by facilitating its decomposition into smaller

parts. In doing so, the complexity for the developers is reduced, which, in turn, helps to avoid

errors and increases the maintainability [10], [11].

In the traditional TLD approach, features are conceptualized, implemented, and then tested.

When applying TDD, this order is changed. While the first step mostly remains identical, stronger

emphasis is put on decomposing the desired functionality into small, capsulated portions [12]. This

is followed by the writing of the tests. To make sure that these actually test new aspects, they are

then executed. Since the actual implementation has not taken place until this point, they are

expected to fail [3]. However, if the tests are passed, this shows that they are not covering a new

functionality. Therefore, it would be necessary to rework them until they do. When the tests for

the current iteration are ready, the actual implementation work to enable the desired capability can

be performed. At this stage, aspects that go beyond the pure functionality, such as the code’s

elegance or how well it adheres to conventions (e.g., naming or style) can be ignored, as long as

the tests provide a positive result [10]. Once this has been achieved, a refactoring phase ensues to

enhance the overall quality of the code [3]. Here, the style and performance (e.g., runtime or

20

memory consumption) of the implementation are improved without altering the resulting

functionality. This is facilitated by the earlier written tests that are used to detect if errors were

introduced during the refactoring.

As stated earlier, this procedure, which has a heavy focus on incremental changes and small

tasks [13], generally increases the test coverage and allows for shorter test cycles [14]. Moreover,

by encouraging the developers to break down the system into many smaller pieces and separate

components, TDD also heavily influences the resulting internal design [15].

While unit tests generally constitute the backbone of TDD, they are typically supposed to be

augmented with other types of tests. In this regard, for instance, system or integration tests [16]

are noteworthy. Especially the former are considered to be essential [17].

Furthermore, since some of the main aspects of TDD are the short test cycles and a high test

frequency, running the tests manually is usually not feasible or at least not desirable. This would

divert valuable time and attention from the developers that could be used more beneficially for the

advancement of the desired application instead of spending it on monotonous routine tasks that

can, nevertheless, still be error-prone. Therefore, test automation plays an important role. To

facilitate it, the utilization of continuous integration (CI) pipelines for the test execution is common

[18], [19]. This way, the existing tests can be automatically run by a CI server once a change to

the code is made, and it is thereby checked if any errors have been introduced.

3 The Review Protocol

To obtain the desired insights into the challenges that accompany the application of TDD, a

structured search was conducted using Scopus. Since it is arguably the largest abstract and citation

database for scientific literature and covers the contributions of numerous reputable research

outlets, its results promise a comprehensive overview that allows to answer the RQ.

The review follows the recommendations of Levy and Ellis [20] and Webster and Watson [21]

to ensure a high degree of comprehensiveness and comprehensibility [22]. Accordingly, this

resulted in a multi-stepped procedure that is further described in the remainder of this section.

To find the relevant papers, the search string was composed as follows:

“test driven development” OR “test-driven development” OR “test driven design” OR “test-

driven design” OR “test first design” OR “test-first design” OR “test first programming” OR

“test-first programming”.

The above search string was applied to the title, assuring a high relevancy of the found

publications to the TDD domain. Yet, by not already addressing the challenges and instead,

initially, broadly looking for papers that deal with TDD, the scope was deliberately widened to

avoid excluding entries that might be of interest for answering the RQ, despite not actually

reflecting it in the title.

As further conditions for inclusion, contributions had to be written in English and published in

conference proceedings or a journal to have the corresponding peer review process as a quality

gate. Moreover, the subject area had to be stated as computer science. This was used to narrow the

search and retrieve only the relevant articles instead of ones from unrelated domains.

Using those parameters, initially, 262 contributions were found. However, not all articles were

suitable for the researched topic. Therefore, additional filtering was needed to reduce the list.

As the first step, the article’s title was read, and some were removed since they were not

applicable because the main focus was deviating from the main subject. For instance, papers like

Towards test-driven development for FPGA-based modules across abstraction levels [23], Why

research on test-driven development is inconclusive” [24], and The Perception of Test-driven

Development in Computer Science – Outline for a Structured Literature Review [25] were filtered

out as the main focus was, for instance, on acceptance testing or just proposing how to conduct a

literature review. After this stage of the filter process, there were 127 candidates left.

In the next step, the abstract of the articles was examined to identify the most suitable items for

the purpose. Articles whose primary research area was not TDD and whose research questions

21

were not aligned with the topics covered in this literature review were dropped. Furthermore, the

same applied to contributions that only discussed the productivity as a challenge, since TDD’s

impact on quality and productivity has already been extensively and comprehensively covered [26]

and a repetition would not yield any value. As a result, 57 articles were left to be reviewed as

potentially relevant. In the following, these were read in detail and only the articles that were

focused on TDD and provided insights into its challenges as (part of) the contribution were

included. This led to a remaining set of ten papers that will be presented in the following section.

An overview of the applied inclusion and exclusion criteria for the search process is given in

Table 1.

Table 1. Inclusion and exclusion criteria

Inclusion criteria Exclusion criteria

Published in conference paper or journal article Not written in English

Is peer-reviewed Content is not relevant to research question

Belongs to the subject area “computer science” Discusses challenges of TDD only in the

background section Main research area is TDD

Provides insights into the challenges of TDD

Deals with challenges besides the productivity

While the number of rejected contributions in the last step appears high, it is caused by the initial

search term being rather open. However, papers that regard the practice of TDD itself could also

contain relevant information concerning the challenges, despite it not being heavily advertised in

the title or abstract. Therefore, many of these articles were only excluded after reading them in

their entirety. The complete paper selection process is depicted in Figure 1.

Figure 1. The paper selection process

 test driven development OR test driven development OR test

driven design OR test driven design OR test first design OR test

first design OR test first programming OR test first programming

 nitial Sear h

 s Title Relevant

 s A stra t Relevant

 s aper Relate to Resear h uestion

 Results

 Results

 Results

Results

22

4 Findings

As an outcome of the conducted literature review, ten publications that reveal limitations and

challenges of TDD in software engineering were identified. Some were retrieved based on

practical TDD applications [27], [28]. Others were derived from summarizing the past literature

[29].

One noticeable aspect is the distribution by year, since there were three papers published in

2011, while the other seven contributions were spread over seven different years, as can be seen

in Table 2. Further, it can be seen that the first paper that was included stems from the year 2009,

despite the first publications being found already in 2002. Since the results of the initial search are

covering 21 years, this means that in the first third of this period, the challenges sought for in this

article have apparently been completely neglected. This is probably due to the use of the TDD

approach being rather novel, leading to other aspects being focused more. From the second period,

seven papers have been included, making it the time with the highest activity. Afterwards, the

interest seems to have decreased again, leading to only three contributions. However, it is not clear

what caused this decline. In contrast, the number of publications found in the initial search has

way less fluctuation. Here, it can be seen that the first third had less activity than the second one,

due to the earliest years and despite the years 2006 and 2007 being extremely productive. The last

third is the one with the least amount of publications, which can, however, be attributed to the year

2022 being still ongoing. When only the years from 2008 to 2021 are regarded, there were 13, 14

publications on average, with twelve and fourteen being the most frequent numbers and only few

outliers, which signifies a relatively constant interest in the topic as a whole.

In the following, the publications that were included in the final set are discussed to give an

overview of the relevant literature and provide subsequent researchers and practitioners with

orientation on which papers might be the most applicable ones for their own endeavors.

Table 2. Distribution of the found publications by year

Year Found in

Initial Search

Included in

Final Set

References (for Publications Included in

the Final Set Only)

2002 3 0

2003 12 0

2004 6 0

2005 6 0

2006 20 0

2007 27 0

2008 11 0

2009 18 1 [28]

2010 14 0

2011 11 3 [27], [30], [31]

2012 12 1 [29]

2013 7 1 [32]

2014 22 1 [33]

2015 12 0

2016 14 0

2017 15 1 [34]

2018 10 1 [35]

2019 12 0

2020 12 0

2021 14 0

2022 4 1 [36]

Total 262 10

Marchenko et al. [28] presented four real challenges they encountered during a three-year-long

TDD project in a team at Nokia Siemens Networks. These were collected through a rigorous

23

interview process conducted with the team members. For them, strict regulation was needed to

maintain the TDD practice. They also highlighted the application in the development of graphical

user interfaces. Moreover, configuration-related development such as creating XML files was

challenging due to technical complexity. Furthermore, it was difficult for them to apply TDD in

their legacy code due to a lack of understanding of the requirements.

Buchan. et al. [27] discovered another interesting point during a three-year-long TDD project

they conducted. They found that the top-level decision-makers of the company were unhappy with

spending a considerable time creating test cases. Their impression was that more time is spent on

the testing rather than working on the actual production code, which is however a misconception.

Causevic et al. [30] compiled seven challenges for adapting TDD in the industry by the means

of a systematic literature review. According to the authors, the barriers are an increased

development time, a lack of theoretical or practical experience in using TDD, as well as domain-

and tool-specific limitations. Further, they listed the absence of a detailed design at the beginning

of the project as well as insufficient skills in developing efficient and effective automated tests.

Finally, insufficient adherence to the TDD practices and guidelines, and the presence of legacy

code complete the list. Regarding the last challenge, the fact that TDD does not account for legacy

code, and it is instead assumed that everything is developed from scratch was highlighted, which

is, however, seldom a realistic assumption. This limitation has created a massive barrier for the

organizations with legacy codebases and hindered adopting the process.

Sami Kollanus [31] also listed some of the literature’s potential challenges, like a lack of a

detailed design that causes heavy refactoring and maintenance, insufficient skill levels to apply

TDD in complex tasks, and not having the correct knowledge or mindset to shift to a new

paradigm. Furthermore, he revealed that the move towards this new process has a high learning

curve and management support is essential for continuing the process. Apart from the issues raised,

he also pointed out that the application of TDD in complex scenarios and circumstances with

limited automation tools is more time-consuming, since a high volume of test code causes

increased maintenance efforts and troubles.

Hammond and Umphress [29] aimed to give an overview of the state of TDD at the time of

publication. Moreover, they also described several TDD extensions such as agile specification-

driven development, behavior-driven design, and acceptance test-driven development. The major

challenges highlighted were related to the design as well as to questions on how to conduct and

structure the development.

Causevic et al. [32] amended their previous insights (see above) by the proposition of a process

flow that is aimed at increasing the defect detection since, oftentimes, tests in TDD are rather

geared towards providing confidence in the developed solution instead of actively looking for

issues.

Roberto Latorre [33] discussed a successful application of TDD in an industrial use case. In the

project, unit tests and acceptance tests have been utilized. Initially, it was not intended to work

test-driven but a lack of comprehensive specifications in conjunction with a tight schedule led to

the abandonment of a more waterfall-like practice in favor of TDD. This was done even though

the developers were rather inexperienced with TDD, rendering this decision a risk even though all

the other characteristics of the endeavor pointed to TDD being the best choice.

Nanthaamornphong and Carver [34] presented the challenges they discovered when applying

TDD in developing scientific software by gathering details from the scientific community. For this

purpose, they developed a survey and distributed it among 300 developers who had experience in

TDD. In doing so, they found four main challenges, namely the increase in time consumption to

develop tests, the difficulty in writing test cases for complex functions, writing tests for those

functions where the results are still unknown since they are still in the research phase, and the

necessity to spend additional time to adapt to the TDD practice due to a lack of skills and

experience. Moreover, the incidental need for setting up a new environment for using TDD in their

projects and the lack of tools capable of creating tests presented additional obstacles.

24

Karac and Turhan [35] provided a rather general overview on the topic of TDD. They

highlighted, inter alia, that only a fraction of the projects that claimed to be conducted test-driven

actually had the developers consequently following the corresponding methodology. In addition,

the misconception, that the test first approach is all that constitutes TDD, ignoring the underlying

design philosophy, was prominent. Furthermore, the developers had a hard time following the

TDD process, sometimes even unintentionally. This led to them already having the production

code (and not the design) in mind when writing their tests.

Baldassarre et al. [36] focused on the affective reactions of the developers supposed to apply

TDD to their projects. For this purpose, they conducted three experiments, concluding that

previous experience with unit testing negatively affects the perception of TDD and the

corresponding activities.

An overview of the major challenges discovered in the application of TDD, mapped to the three

categories, people, software, and process, is given in Table 3. Hereby, the first aspect pertains to

challenges related to the development team and supervisors. In contrast, best practices related to

tools, frameworks used in TDD applications, and code implementation guidelines are categorized

as software. Finally, challenges regarding the implementation of the actual process fall into the

last category.

Table 3. The major challenges of TDD

Challenge type Description References

People Lack of knowledge, experience, and competencies in applying TDD [27], [30], [32],

[33], [34], [35]

 Difficulty to shift to the TDD mindset [28], [29], [31],

[32], [36]

 Senior-level management not having a proper understanding of the

TDD practice

[27], [32]

Software Technical complexity in applying TDD in certain scenarios such as

GUI development, configuration development, or complex functions

[28], [30], [32]

 Lack of suitable software tools to create tests [31], [32], [34]

Process Lack of detailed upfront design [29], [31], [32],

[35]

 Not having proper guidelines for using TDD for legacy code [30]

 High test code volume [32]

 Tests are often geared towards providing confidence in the developed

solution instead of actively looking for issues

[32]

5 Discussion

When aggregating the findings from the previously described papers, several insights can be

derived that help to understand the issues that arise when trying to introduce TDD. This, in turn,

also helps to identify potential measures on how to overcome these deficiencies.

One major challenge that became apparent was a lack of general knowledge, experience, and

competencies regarding the domain of testing by many developers that were supposed to

implement the projects in a test-driven manner, hindering them from creating efficient and

effective automated tests [27], [30], [34], [35]. This coincides with the findings of a study [37]

regarding the situation of teaching in software engineering. There, the authors compared the needs

of the industry with the skills taught by universities to their students. They discovered that, while

testing is one of the most relevant skills, big knowledge gaps still exist. Since the students

themselves are oftentimes also not particularly interested in testing, conveying the necessary skills

is a challenging task that might necessitate lecturers to come up with new and engaging

approaches, such as the use of gamification [38].

Even though TDD provides excellent benefits, its application in the industry is a demanding

task [30], with one of the main issues being the lack of previous exposure to TDD [30], [33].

25

Naturally, this is a significant factor because not only general testing skills are necessary, but also

capabilities that are specific to TDD.

Heavily related to the aforementioned aspects is the challenge of switching to a TDD mindset

for those that have extensive experience with the traditional TLD method. This not only requires

high self-discipline but can also be accompanied by a huge (perceived) overhead [27], [28], [29],

[31]. This impression can be exacerbated by the high volume of test code and the need to

continuously maintain the test base [32].

These issues, in turn, force the developers to spend a lot of time familiarizing themselves with

the corresponding processes and procedures, while simultaneously posing a risk of the method

being incorrectly applied (due to a lack of skills or willingness) and therefore negatively affecting

the results. In addition, one study [36] even concluded that previous exposure to unit testing

negatively affects the perception of TDD. Therefore, the development of methods for the

introduction of TDD to experienced testers as well as the exploration of further ways to make TDD

more accessible appear to be extremely important to facilitate its (correct) application. The latter

could, for instance, include tools for its teaching, process models, collections of case studies and

best practices, experience reports, or workshop concepts. Moreover, in addition to the developers,

senior management also must be convinced and educated on the method [27], [32]. Otherwise, the

comparatively high time investment for creating test cases might be perceived as wasted and

unproductive, leading to a mandated return to the traditional TLD method.

Furthermore, several researchers have found that the absence of a detailed design of the system

is challenging when applying TDD [29], [31], [35]. This is another issue that could be at least

somewhat alleviated through process models, guidelines, checklists, and best practices. While the

specifics of different projects may obviously vary, preventing the creation of a universal design or

similar approaches, providing the developers with general guidance that they can rely on to

structure their own work appears to be a sensible solution to tackle the issue. This way, the

negligence of important aspects can be reduced or even entirely avoided, since the work is

conducted in a more structured manner. While not completely related, this focus on a better

structured approach also pertains to the correct choice of implemented test cases, since they are

oftentimes rather geared towards providing confidence in the developed solution instead of

actively looking for issues [32].

Another aspect that became visible is a frequently prevailing lack of proper tools for (automated)

testing. However, this can be probably seen as a combination of an actual absence as well as an

insufficient knowledge of many developers regarding already existing tools that could be suitable

for their respective tasks. Therefore, a comprehensive overview of such tools as well as an

extensive body of published case studies might help to find inspiration on how to approach projects

from a tooling perspective.

Finally, the existence of complex application cases that are not yet sufficiently studied in the

context of TDD as well as the question how to deal with legacy code are additional challenges that

call for further research and the exploration of innovative approaches.

6 Conclusion

With software having an increasingly important role in today’s society and influencing nearly all

parts of daily life in at least some capacity, it also becomes significantly more important to ensure

its intentional functioning and the prevention of having undetected errors. Consequently, one of

the major concerns of the software engineering community is the aspect of quality assurance. For

this purpose, a plethora of tools, concepts, and approaches have been proposed. One of these is the

concept of TDD, which changes the traditional order in which productive code and the

corresponding tests are written. Thus, TDD also heavily influences the general software design of

the developed solutions. In doing so, a more modular structure is created that also features a better

test coverage, leading to improved product quality. However, this also comes with several

challenges that can have a negative impact on the obtained results. Hence, it is important to be

26

aware of the potential issues which allows to account for these problems in practical projects and

also provides guidance for researchers that strive to improve upon the current situation. For this

reason, a structured literature review was conducted, focusing on the major challenges that occur

when applying test-driven development in software engineering, aside from the already well-

researched increase in development time and required effort. In doing so, several challenges that

are related to the people participating in the development process, the related software and tooling,

and the development process itself were identified. Furthermore, potential ways of overcoming

those issues were discussed.

While many aspects are significant, some appear to offer particularly high potential for further

studies. Especially improving the ways of teaching testing in general as well as TDD in specific,

creating new tools suitable for the purpose, the exploration of ways on how to deal with legacy

code when trying to utilize TDD, and the provisioning of process models, guidelines, and best

practices that help the developers in correctly utilizing the TDD methodology to benefit their

projects appear to be promising avenues for future research. As with any scientific publication,

there are some limitations and potential weaknesses. For this article, these mostly pertain to the

possibility that there is additional insightful literature that was not covered by the search process.

Moreover, despite the best efforts to ensure objectivity and diligence, the human factor during the

filter and analysis process might also contribute to a certain bias or oversights.

References

[1] R. Kazman and . Pasquale, “Software ngineering in Society,” IEEE Softw., vol. 37, no. 1, pp. 7–9, 2020.

Available: https://doi.org/10.1109/MS.2019.2949322

[2] W. . Wong, N. Mittas, . M. Arvanitou, and Y. i, “A bibliometric assessment of software engineering themes,

scholars and institutions (2013–2020 ,” Journal of Systems and Software, vol. 180, no. 11, p. 111029, 2021.

Available: https://doi.org/10.1016/j.jss.2021.111029

[3] K. Beck, Test-Driven Development: By Example, 20th ed. Boston: Addison-Wesley, 2015.

[4] D. Staegemann, M. Volk, . autenschlager, M. Pohl, M. Abdallah, and K. urowski, “Applying est Driven

Development in the Big Data Domain – Lessons from the iterature,” in Proceedings of the 2021 International

Conference on Information Technology (ICIT), Amman, Jordan, pp. 511–516, 2021. Available:

https://doi.org/10.1109/ICIT52682.2021.9491728

[5] W. Bissi, A. G. Serra Seca Neto, and M. C. F. P. mer, “ he effects of test driven development on internal

quality, external quality and productivity: A systematic review,” Information and Software Technology, vol. 74,

no. 4, pp. 45–54, 2016. Available: https://doi.org/10.1016/j.infsof.2016.02.004.

[6] Y. Rafique and V. B. Misic, “ he ffects of est-Driven Development on External Quality and Productivity: A

Meta-Analysis,” IIEEE Trans. Software Eng., vol. 39, no. 6, pp. 835–856, 2013. Available:

https://doi.org/10.1109/TSE.2012.28.

[7] C. M. Keet and A. Ławrynowicz, “ est-Driven Development of Ontologies,” in Lecture Notes in Computer

Science, The Semantic Web. Latest Advances and New Domains, H. Sack, E. Blomqvist, M. d'Aquin, C. Ghidini,

S. P. Ponzetto, and C. Lange, Eds., Cham: Springer International Publishing, pp. 642–657, 2016. Available:

https://doi.org/10.1007/978-3-319-34129-3_39

[8] K. Davies, C. M. Keet, and A. awrynowicz, “More ffective Ontology Authoring with est-Driven

Development and the DDonto2 ool,” Int. J. Artif. Intell. Tools, vol. 28, no. 7, 2019. Available:

https://doi.org/10.1142/S0218213019500234

[9] . Slaats, S. Debois, and . Hildebrandt, “Open to Change: A heory for terative est-Driven Modelling,” in
Lecture Notes in Computer Science, Business Process Management, M. Weske, M. Montali, I. Weber, and J.

Vom Brocke, Eds., Cham: Springer International Publishing, pp. 31–47, 2018. Available:

https://doi.org/10.1007/978-3-319-98648-7_3

[10] . Crispin, “Driving Software Quality: How est-Driven Development mpacts Software Quality,” IEEE Softw.,

vol. 23, no. 6, pp. 70–71, 2006. Available: https://doi.org/10.1109/MS.2006.157

[11] F. Shull, G. Melnik, B. urhan, . ayman, M. Diep, and H. rdogmus, “What Do We Know about est-Driven

Development?” IEEE Softw., vol. 27, no. 6, pp. 16–19, 2010. Available: https://doi.org/10.1109/MS.2010.152

https://doi.org/10.1109/MS.2019.2949322
https://doi.org/10.1016/j.jss.2021.111029
https://doi.org/10.1109/ICIT52682.2021.9491728
https://doi.org/10.1016/j.infsof.2016.02.004
https://doi.org/10.1109/TSE.2012.28
https://doi.org/10.1007/978-3-319-34129-3_39
https://doi.org/10.1142/S0218213019500234
https://doi.org/10.1007/978-3-319-98648-7_3
https://doi.org/10.1109/MS.2006.157
https://doi.org/10.1109/MS.2010.152

27

[12] D. Fucci, H. rdogmus, B. urhan, M. Oivo, and N. Juristo, “A Dissection of the est-Driven Development

Process: Does It Really Matter to Test-First or to Test- ast?” IIEEE Trans. Software Eng., vol. 43, no. 7, pp.

597–614, 2017. Available: https://doi.org/10.1109/tse.2016.2616877

[13] . Williams, . M. Maximilien, and M. Vouk, “ est-driven development as a defect-reduction practice,” in

Proceedings of the 14th ISSRE, Denver, Colorado, USA, 2003, pp. 34–45.

[14] D. Janzen and H. Saiedian, “ est-driven development concepts, taxonomy, and future direction,” Computer, vol.

38, no. 9, pp. 43–50, 2005. Available: https://doi.org/10.1109/MC.2005.314

[15] D. Janzen and H. Saiedian, “Does est-Driven Development Really mprove Software Design Quality?,” IEEE

Softw., vol. 25, no. 2, pp. 77–84, 2008. Available: https://doi.org/10.1109/MS.2008.34

[16] R. S. Sangwan and P. A. aplante, “ est-Driven Development in arge Projects,” IT Prof., vol. 8, no. 5, pp. 25–

29, 2006. Available: https://doi.org/10.1109/MITP.2006.122

[17] W. K. A. aw, “ earning ffective est Driven Development – Software Development Projects in an Energy

Company,” in Proceedings of the First International Conference on Software and Data Technologies, Setúbal,

Portugal, pp. 159–164, 2006.

[18] M. Karlesky, G. Williams, W. Bereza, and M. Fletcher, “Mocking the Embedded World: Test-Driven

Development, Continuous ntegration, and Design Patterns,” in Embedded Systems Conference, San Jose,

California, USA, 2007.

[19] M. Shahin, M. Ali Babar, and . Zhu, “Continuous ntegration, Delivery and Deployment: A Systematic Review

on Approaches, ools, Challenges and Practices,” IEEE Access, vol. 5, pp. 3909–3943, 2017. Available:

https://doi.org/10.1109/ACCESS.2017.2685629

[20] Y. evy and . J. llis, “A Systems Approach to Conduct an ffective iterature Review in Support of
 nformation Systems Research,” Informing Science: The International Journal of an Emerging Transdiscipline,

vol. 9, pp. 181–212, 2006. Available: https://doi.org/10.28945/479

[21] J. Webster and R. . Watson, “Analyzing the Past to Prepare for the Future: Writing a iterature Review,” MISQ,

vol. 26, no. 2, pp. xiii–xxiii, 2002.

[22] J. Vom Brocke, A. Simons, B. Niehaves, K. Reimer, R. Plattfaut, and A. Cleven, “Reconstructing the Giant: On

the mportance of Rigour in Documenting the iterature Search Process,” in Proceedings of the ECIS 2009,

Verona, Italy, 2009.

[23] J. Caba, F. Rincon, J. Barba, J. A. de a orre, J. Dondo, and J. C. opez, “ owards est-Driven Development

for FPGA-Based Modules Across Abstraction evels,” IEEE Access, vol. 9, pp. 31581–31594, 2021. Available:

https://doi.org/10.1109/ACCESS.2021.3059941

[24] M. Ghafari, . Gross, D. Fucci, and M. Felderer, “Why Research on Test-Driven Development is nconclusive?”

in Proceedings of the 14th ACM / IEEE International Symposium on Empirical Software Engineering and

Measurement (ESEM), Bari Italy, pp. 1–10, 2020. Available: https://doi.org/10.1145/3382494.3410687

[25] . autenschläger, “ he Perception of est Driven Development in Computer Science – Outline for a Structured

 iterature Review,” in Lecture Notes in Business Information Processing, Business Information Systems

Workshops, W. Abramowicz, S. Auer, and M. Stróżyna, ds., Cham: Springer nternational Publishing,

pp. 121–126, 2022. Available: https://doi.org/10.1007/978-3-031-04216-4_13

[26] D. Staegemann, M. Volk, E. Lautenschläger, M. Pohl, M. Abdallah, and K. urowski, “Applying est Driven

Development in the Big Data Domain – Lessons from the iterature,” in Proceedings of the 2021 International

Conference on Information Technology (ICIT), Amman, Jordan, pp. 511–516, 2021. Available:

https://doi.org/10.1109/ICIT52682.2021.9491728

[27] J. Buchan, . i, and S. G. MacDonell, “Causal Factors, Benefits and Challenges of est-Driven Development:

Practitioner Perceptions,” in Proceedings of the 2011 18th Asia-Pacific Software Engineering Conference, Ho

Chi Minh, Vietnam, pp. 405–413, 2011. Available: https://doi.org/10.1109/APSEC.2011.44

[28] A. Marchenko, P. Abrahamsson, and . hme, “ ong-Term Effects of Test-Driven Development A Case Study,”

in Lecture Notes in Business Information Processing, Agile Processes in Software Engineering and Extreme

Programming, P. Abrahamsson, M. Marchesi, and F. Maurer, Eds., Springer, Berlin, Heidelberg, pp. 13–22,

2009. Available: https://doi.org/10.1007/978-3-642-01853-4_4

[29] S. Hammond and D. Umphress, “ est driven development: the state of the practice,” in Proceedings of the 50th

Annual Southeast Regional Conference on - ACM-SE '12, Tuscaloosa, Alabama, p. 158, 2012. Available:

https://doi.org/10.1145/2184512.2184550

https://doi.org/10.1109/tse.2016.2616877
https://doi.org/10.1109/MC.2005.314
https://doi.org/10.1109/MS.2008.34
https://doi.org/10.1109/MITP.2006.122
https://doi.org/10.1109/ACCESS.2017.2685629
https://doi.org/10.28945/479
https://doi.org/10.1109/ACCESS.2021.3059941
https://doi.org/10.1145/3382494.3410687
https://doi.org/10.1007/978-3-031-04216-4_13
https://doi.org/10.1109/ICIT52682.2021.9491728
https://doi.org/10.1109/APSEC.2011.44
https://doi.org/10.1007/978-3-642-01853-4_4
https://doi.org/10.1145/2184512.2184550

28

[30] A. Causevic, D. Sundmark, and S. Punnekkat, “Factors imiting ndustrial Adoption of est Driven
Development: A Systematic Review,” in Proceedings of the 2011 Fourth IEEE International Conference on

Software Testing, Verification and Validation, Berlin, Germany, pp. 337–346, 2011. Available:

https://doi.org/10.1109/ICST.2011.19

[31] S. Kollanus, “Critical ssues on est-Driven Development,” in Lecture Notes in Computer Science, Product-

Focused Software Process Improvement, D. Caivano, M. Oivo, M. T. Baldassarre, and G. Visaggio, Eds.,

Springer, Berlin, Heidelberg, pp. 322–336, 2011. Available: https://doi.org/10.1007/978-3-642-21843-9_25

[32] A. Causevic, S. Punnekkat, and D. Sundmark, “ DDHQ: Achieving Higher Quality esting in est Driven
Development,” in Proceedings of the 39th Euromicro Conference on Software Engineering and Advanced

Applications, Santander, Spain, pp. 33–36, 2013. Available: https://doi.org/10.1109/SEAA.2013.47

[33] R. atorre, “A successful application of a est-Driven Development strategy in the industrial environment,”
Empir Software Eng, vol. 19, no. 3, pp. 753–773, 2014. Available: https://doi.org/10.1007/s10664-013-9281-9

[34] A. Nanthaamornphong and J. C. Carver, “ est-Driven Development in scientific software: a survey,” Software

Qual J, vol. 25, no. 2, pp. 343–372, 2017. Available: https://doi.org/10.1007/s11219-015-9292-4

[35] . Karac and B. urhan, “What Do We Really Know about est-Driven Development?” IEEE Softw., vol. 35,

no. 4, pp. 81–85, 2018. Available: https://doi.org/10.1109/MS.2018.2801554

[36] M. T. Baldassarre, D. Caivano, D. Fucci, S. Romano, and G. Scanniello, “Affective reactions and test-driven

development: Results from three experiments and a survey,” Journal of Systems and Software, vol. 185, 2022.

Available: https://doi.org/10.1016/j.jss.2021.111154

[37] V. Garousi, G. Giray, . üzün, C. Catal, and M. Felderer, “Aligning software engineering education with
industrial needs: A meta-analysis,” Journal of Systems and Software, vol. 156, pp. 65–83, 2019. Available:

https://doi.org/10.1016/j.jss.2019.06.044

[38] G. Fraser, A. Gambi, M. Kreis, and J. M. Rojas, “Gamifying a Software esting Course with Code Defenders,”
in Proceedings of the 50th ACM Technical Symposium on Computer Science Education, Minneapolis MN USA,

pp. 571–577, 2019. Available: https://doi.org/10.1145/3287324.3287471

https://doi.org/10.1109/ICST.2011.19
https://doi.org/10.1007/978-3-642-21843-9_25
https://doi.org/10.1109/SEAA.2013.47
https://doi.org/10.1007/s10664-013-9281-9
https://doi.org/10.1007/s11219-015-9292-4
https://doi.org/10.1109/MS.2018.2801554
https://doi.org/10.1016/j.jss.2021.111154
https://doi.org/10.1016/j.jss.2019.06.044
https://doi.org/10.1145/3287324.3287471

