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Abstract. Conceptual models are an effective and unparalleled means to 

communicate complicated information with a broad variety of stakeholders in a 

short period of time. However, in practice, conceptual models often vary in 

clarity, employed features, communicated content, and overall quality. This 

potentially impacts model comprehension to a point where models are factually 

useless. To counter this, guidelines to create “good” conceptual models have been 

suggested. However, these guidelines are often abstract, hard to operationalize in 

different modeling languages, partly overlap, or even contradict one another. In 

addition, no comparative study of proposed guidelines exists so far. This issue is 

exacerbated as no established metrics to measure or estimate model 

comprehension for a given conceptual model exist. In this article, we present the 

results of a literature survey investigating 109 publications in the field and discuss 

metrics to measure model comprehension, their quantification, and their 

empirical substantiation. Results show that albeit several concrete quantifiable 

metrics and guidelines have been proposed, concrete evaluative 

recommendations are largely missing. Moreover, some suggested guidelines are 

contradictory, and few metrics exist that allow instantiating common frameworks 

for model quality in a specific way. 

Keywords: Model-Based Development, Model-Based Engineering, Model-

Based Software Engineering, Graphical Representations, Model Comprehension, 

Model Quality, Literature Survey. 

1 Introduction 

Model-based software engineering has established as avenue to remedy challenges in the 

development of modern software systems [1]. This includes the increasing demand for tightly 

integrated development processes taking different professions into account [2]–[5], the rapid need 

for innovation [6], growing inter-connectedness of devices [7], or the rise of cloud computing [8]. 
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However, the term “model-based” can mean different things, depending on the specific sub-

discipline of software engineering: while traditionally, the term was used to denote mathematical 

models of system execution (see, e.g., [9]), especially since the advent of UML, visual models and 

graphical representations are seen as a means to improve communication among stakeholders 

about the system under development (SUD) [1], [10], [11]. The particular benefit of conceptual 

models lies in their ability to structure complex information and dependencies through abstraction 

and through features of the modeling language. In the remainder of this article, we use the terms 

“conceptual model” and “visual diagram” interchangeably to mean graphical representations used 

to facilitate the development of complex software systems. The models under investigation in this 

work hence comprise any diagram types that may foster visual inspection by stakeholders, such as 

ArchiMate or UML, even though their primary purpose may be that of automated verification or 

execution (as is the case with graphs or SIMULINK models).  

The benefit of conceptual models during development can only be harvested if the adequate 

modeling languages are used and if the created conceptual models are comprehensible. While 

research regularly deals with the former (i.e., when to use which modeling language in specific 

development situations), the question of when a diagram (of a given language) is comprehensible 

and therefore most useful to stakeholders during development is a question not easily answered.  

Several quality frameworks have been introduced to assess the quality of diagrams for a specific 

purpose (e.g., [12]), to assess the usability of the notation (e.g., Moody’s “Physics of Notation” 

[13]), or to assess the suitability of the diagram with regard to the universe of discourse (e.g., the 

FRISCO Report [14]). However, these frameworks are generic and difficult to operationalize 

regarding a specific development project. In consequence, modelers are faced with the challenge 

of deriving their own metrics to measure the quality of a conceptual model, which is often implicit 

to the modeler. To this day, there is still little guidance to assess whether a conceptual model is 

comprehensible. Nevertheless, several studies into factors impacting diagram comprehension have 

been conducted over the past decades. Still a wholistic summary on factors influencing model 

comprehension and metrics to measure model quality is missing.  

In the following, we will focus on the comprehension quality of the model, not on other factors 

influencing the comprehension such that are inherent to the model reader, e.g., time constraints or 

experience level. To structure the body of work in this area and showcase guidelines for creating 

comprehensible conceptual models, this article contributes a systematic literature review to 

identify and to investigate metrics to measure comprehension quality of conceptual models. 

This article is structured as follows: Section 2 introduces related work on model quality 

frameworks and factors influencing model comprehension. Section 3 presents the study design and 

Section 4 the major results of the literature review. Section 5 discusses implications before Section 

6 concludes the article. 

2 Related Work 

Several prominent frameworks to assess the – broadly speaking – quality of models have been 

suggested. In a large body of work, Wand and Weber [16]–[24] build a model quality framework 

based on Bunge’s Ontology [24], commonly referred to as the Bunge-Wand-Weber framework 

[25]. This framework differentiates the compositional view onto the SUD from the view of what 

the system externally interacts with. This differentiation allows assessing “internal” and “external 

forces” that affect the model of the system, hence reducing the question of “model quality” mostly 

to a question of “model completeness” and by extension “model correctness”. This requires the 

reader to have a complete understanding of the domain for which the model was built.  

By contrast, the FRISCO report [14] introduces a classification scheme for the basic elements 

of every model, covering semantic and ontological aspects of model creation. While more focused 

on the properties of the model itself, the framework must be instantiated for each model type 

specifically, requiring the quality assessment to become a question of adequacy of used modeling 

concepts. Recognizing this limitation, an extension of the FRISCO report is suggested by Krogstie 
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et al. [12], which propose five additional facets of model quality in addition to the semantic quality. 

These are: empirical (is the model suitable?), syntactic (are the model elements used correctly?), 

pragmatic (does the model say what needs to be said?) and social (do the modeler and the reader 

understand it the same way?). The authors point out the difficulty in creating an absolute measure 

of quality, meaning that their framework also needs to be instantiated for each model separately.  

A more generically applicable framework is Moody’s “Physics of Notation” [13]. In this work, 

Moody proposes several “principles” to assess the adequacy of the used modeling concepts to 

represent the subject matter (e.g., “Cognitive Fit” to describe if the used symbol is adequate to 

communicate a concept). These principles, however, serve mainly as guidelines to improve the 

visual aspects of newly created modeling language as opposed to assessing the quality of a model 

to represent the requirements of a system under development. Moody’s work was extended in the 

framework by Genero, Piattini, and Calero [26], which aims to combine Moody’s focus on the 

development of visual models with measures to improve layout and positioning of elements within 

the models. Combining both methods was meant to create a complete measure of diagram 

comprehensibility. The measures focus on four key areas of improvement. These are associations 

between model elements, aggregation of similar concepts, generalization to more abstract or 

reversely, to more specific concepts, and dependencies between concepts such as mutual 

constraints. 

All these frameworks are similar in their argument about the individual model and how it is 

made, not what the role of the model is. This shortcoming is addressed in Kruchten’s 4+1 View 

Model of Architecture [27]. To assist a selection of the model type and constrain the content this 

model ought to have, given the vastness of the subject matter, Kruchten structures his framework 

according to software development processes they support. Hence, the framework differentiates 

between the logical view (relationships between entities of the subject matter), the process view 

(functions and processes the SUD offers or is part of), the physical view (describing how the SUD 

fits into its operational context), the development view (the relationship between the system and 

the context in which it is developed), and the usage view (the application of the system). Although 

Kruchten’s work was a key factor enabling model-driven software development by suggesting 

more concrete roles for diagrams, his framework limits the assessment of model quality to that of 

applicability if the underlying development process is roughly compatible.  

In addition to the classic frameworks suggested above, a number of studies have taken a more 

empirical approach to find properties of models that indicate quality. For instance, MacCreery and 

Tenbergen [28] investigate students’ use of various diagram types in different modeling contexts 

(e.g., capstone projects or assignment sheets) across several semesters and different courses. Using 

the framework by Krogstie et al. as the evaluative standard, the authors identified that in free 

modeling tasks, students rarely make use of all diagram features and, especially in capstone-type 

contexts, resort to using few model types extensively. The authors also identify common errors, 

such as missing association labels or confusing dynamic and static UML model elements. 

El-Attar studied the model creation and comprehension process of roughly 150 students and 

practitioners [29], [30]. Participants were exposed paper-based or screen-based depictions of state 

charts and use case diagrams and were given comparatively simple comprehension tasks. These 

partly used models containing slight syntactical errors. Results show that students perform 

comparably to practitioners in model comprehension [29]. Furthermore, results show [30] the 

screen-based exposure to models may improve comprehension time and induce fewer 

comprehension errors than reading models on paper. Similarly, Zayan et al. [31] showed in an 

experiment involving 26 graduate students that participants were up to 80% less likely to make 

mistakes during model comprehension when provided with illustrative examples and asked up to 

90% fewer clarification questions to domain experts.  

In a recent and comprehensive study by Daun et al. [32], the authors collated the results of a 

series of experiments investigating the role of experience and confidence on model 

comprehension. In four experiments involving between 55 and 238 undergraduate and graduate 

students, participants were asked to self-assess their experience and confidence regarding visual 
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notations, exposed to functional design diagrams and message sequence charts, and asked a series 

of simple questions pertaining to the content of the diagrams. Results show that while most 

students have an implicit “feeling” of correct versus incorrect diagrams, their self-reported 

experience and confidence do not adequately predict performance. Yet, these factors are often 

used as a measure to establish participant comparability in empirical studies. 

In summary, very little work is apparent that directly aims to operationalize the several 

frameworks that exist to quantify model quality. In addition, empirical work largely appears to 

investigate properties of the modeler or the modeling process, rather than investigate the models 

as the product. An exception is the work [28], which, however, is also agnostic of the 

aforementioned quality frameworks. In conclusion, there is little knowledge available on how the 

quality of the diagram itself impacts comprehension, or which properties a model should have in 

order to maximize understanding. 

3 Study Design 

To close the gap in research outlined above, we conducted a systematic literature review with the 

aim to provide an analysis of the state of the art on factors influencing model comprehension. In 

this section, we elaborate on the study design. The following Section 4 discusses the results. 

3.1 Goal and Research Questions 

In this study, we investigate metrics to measure comprehension of conceptual models. By this we 

mean any empirical finding that can be applied to a model to improve comprehension. This 

definition expands the range of applicable findings and allows for the inclusion of many smaller 

findings that may not make it into a normal strictly quantifiable metric. Locating all the findings 

with significance will indicate areas of modeling, during the modeling process, that may serve to 

improve comprehension. We define three research questions (RQs): 

RQ1: What model types and model properties are measured in literature? Since the quality of 

models depends on the information expressed therein, this RQ aims to establish which types of 

models or modeling languages are subject to investigation.  

RQ2: What metrics for model comprehension exist? Model types and modeling languages 

pertain to different conceptual levels and lend themselves to express different information but are 

united in their aim to convey information about the SUD. This RQ seeks to understand which 

concrete metrics can be proposed to quantify or guide the factors maximizing the readers’ ability 

to comprehend the conveyed information. 

RQ3: How are metrics quantified and which evaluative recommendations exist for them? This 

RQ investigates if the literature suggests any evaluative recommendation that may help in 

assessing the quality of models, either absolutely (e.g., no more than 7 classes per diagram) or 

relatively (e.g., fewer associations are preferable) given the factors found in RQ2. To understand 

this, we also take a closer look at the mode of quantification for the individual metrics. 

3.2 Search Process 

The study was planned as database search based on the best practices outlined by Kitchenham [33] 

and Petersen et al. [34], and – due to the thematic similarity – Genero et al. [36]. Only peer-

reviewed digital sources, including journals and conferences, with online databases were searched. 

The electronic selections were made based on their inclusion of a broad range of topics in computer 

science. The search string (see Table 1) was created based on the primary search terms, these terms 

being “Comprehension”, “Quality”, and “Model/Diagram”. These search strings were made using 

Boolean AND, OR terms to combine major search terms. For each term, synonyms have been 

defined, the search string has then been evaluated and optimized using the quasi-gold standard 

[35]. The search was conducted in commonly recommended databases such as ACM, IEEE, 
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SpringerLink, ScienceDirect, GoogleScholar. With databases that did not allow Boolean search 

terms the search strings were modified and the search system was manipulated to receive 

comparable results.  

Table 1. Details on the search strings used. These were used in combination, as a single large string. 

Term Synonyms in Search String 

Comprehension Perceptions OR recall OR recall task OR semiotic OR survey 

OR understandability 

Quality Usability 

Model/Diagram UML OR BPMN OR FSA OR FST OR mealy machine OR 

moore machine OR class OR activity OR sequence OR i\* OR 

i-star OR KAOS OR tropos OR GSN OR goal structure 

notation OR automat OR representation OR entity relationship 

OR EER 

3.3 Inclusion / Exclusion Criteria  

For inclusion decision was made to focus mainly on papers proposing or applying metrics to 

measure model quality, specifically those pertaining to comprehensibility. Papers not falling into 

this category were discarded after discussion between the first two authors. Papers addressing 

factors pertaining to the modeler (e.g., level of experience) were excluded in the same manner. We 

excluded paper from the result set if they did not consider graphical models (e.g., Matlab models 

of system execution) or did not focus on visual aspects of the diagram fostering human 

comprehension (e.g., suitability of class diagrams to be transformed into Entity Relationship 

diagrams). Furthermore, we excluded all non-peer reviewed work, contributions to fields other 

than computer science and software engineering, papers neither available online nor via 

interlending, non-English publications, papers fewer than 4 pages, editorials, opinion pieces about 

modeling practices without discussion of concrete metrics, and papers from before 1995 as we are 

interested in metrics going beyond the established model quality frameworks. The search took 

place in summer and fall 2018 and includes studies until that time. 

3.4 Paper Selection Process 

Three stages of filtering were conducted to reduce the set of papers: first, papers were selected 

based on the title; second, based on the abstract; third, based on the actual content. For each 

database, the results were sorted according to relevancy and the first 150 results from each database 

that we searched were selected for review by title search. This process involved one researcher 

sorting article relevance by title and another researcher reviewing this sort and comparing the 

decisions made; any conflicts were discussed and if no decision could be found the paper was 

included. From title filtering 566 papers were identified as potentially relevant. Abstract screening 

resulted in excluding of 249 papers, leading to 317 remaining as potentially relevant. These were 

then investigated in-depth by reading the entire paper and identifying the proposed metrics within. 

In doing so, a set of 115 relevant papers that propose some kind of metric to measure model 

comprehension has been received, from which another 6 papers were excluded as duplicates or 

non-English papers. The final set of 109 papers was included in this study. 

3.5 Validity Evaluation 

The scope and size of this research leaves it open to several threats to validity. The discussion of 

the potential threats according to [36] and the measures to reduce or eliminate them follows.  

Conclusion Validity. Regarding the conclusions that can be drawn, it must be admitted that 

throughout the developed guidelines for search and selection, there is a potential for bias to affect 
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the search. The use of two reviews and a policy of “include when in doubt” was adopted to reduce 

this threat. Since no classification of results beyond include/exclude took place, no interrater 

reliability measure was applied.  

Internal Validity. The maturation of the researchers during the data extraction period makes it 

possible that papers reviewed later may be more thoroughly or effectively investigated than earlier 

searches. This means some results may not have been found properly. There was a review of all 

articles to attempt to mitigate this issue. The selection of articles and general searches may have 

been affected by internal bias. This is difficult to totally avoid, but the use of two reviewers limited 

the scope of this threat. The third researcher acted as quality control for this purpose.  

Construct Validity. There is a potential for inadequate preoperational explication of constructs. 

During the creation of the search strings and research questions there is a chance that some key 

elements or concepts were overlooked. These questions were reviewed several times by all authors 

to reduce the chance of this occurring. One of the researchers’ main fields of investigation is in 

UML and its application of it in the development process. This may have introduced a bias into 

the creation of RQs. These research questions were defined regardless of application of the model 

and focused on comprehension to avoid the mono-operations bias. Repeated reviews of activities 

by all researchers reduce, but do not remove this threat. The entire survey is vulnerable to restricted 

generalizability across constructs. The large number papers collected, and the cross comparisons 

mitigates this issue. The non-specific nature of the heuristics presented also reduces potential for 

inadequate explication of constructs.  

External Validity. The lengthy review process mixed with the general learning curve for this 

type of research opens the study up to the potential of history effect findings. The articles were 

reviewed in order and the re-reviewed after completion of the first cycle, to reduce the chance of 

experience effecting results.  

4 Results 

4.1 RQ1: Model Types and Model Properties 

To answer RQ1, we first quantified the number of times primary studies investigated specific 

model types (e.g., BPMN or UML use case diagrams) and which model properties these studies 

investigated (e.g., compositionality of items or use of stereotypes). For each, we also identified 

what type of evidence the study at hand proposes (e.g., correctness of usage or experience report). 

In all cases, we resorted to the study’s explicit mention of model types, properties, and 

characterization of evidence, allowing for multiple matching categories (e.g., if a study compared 

the effect of layout on class diagram and ER diagram comprehension), but combined several 

papers by the same authors to a single study if reporting on the same or similar topic (e.g., as is 

the case with extended versions of manuscripts). A comparatively small number of studies present 

no evidence beyond author opinion, noted under category “opinion” [34]. Figure 1 shows the 

results. 

As Figure 1 shows, one of the most researched areas in the field is on the comprehension of 

UML class diagrams. This focus is understandable given the popularity and wide use of these. The 

visual features of conceptual models also mainly focused on models of UML. Most other model 

types outside of UML and BPMN are ignored by research in general (e.g., KAOS diagrams) or, as 

is the case with EPC, YAWL, or CSD models, receive a comparatively little attention. Given that 

some model types such as KAOS goal diagrams, feature models, or GSN safety arguments are 

used for rather special purposes as opposed to generically applicable ER, UML, or BPMN models, 

this may explain the relatively few studies regarding their comprehensibility.  
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Figure 1. The number of papers found for each model type (divided between UML and non-UML 

languages) 

Most studies aim to generically investigate “visual features” of models. In this category, we 

counted studies, which investigate aspects of the visual notational elements, such as shape of 

model elements, visual style of associations (e.g., bend, cornered, or Bezier-curved), or other 

visual features that are not strictly related to layout. Yet, in addition to layout in general as well as 

appropriateness of used symbols, visual features of diagrams are among the most intensively 

studied aspects of model comprehension, especially using empirical investigations. These three 

model properties are also the key drivers of Moody’s Principle of semiotic clarity described in 

[12], [13]. Surprisingly many studies specifically investigate the use of stereotypes in UML 

diagrams or composite states in automata model types, while other specific model properties (e.g., 

n-ary relationships in class and ER diagrams) have not been the subject of identified primary 

studies (composite states in this case is not to be confused with nestedness of model elements, 

which partly includes containment- and aggregation relationships). 

Answer to RQ1: From these findings we can conclude that the predominant factors pertaining 

to model comprehension that are investigated in the literature are visual features as well as layout 

of UML class diagrams and BPMNs, followed by remaining UML diagram types. 

4.2 RQ2: Metrics for Model Comprehension 

To answer RQ2, we quantified the number of times primary studies investigated specific model 

properties (e.g., stereotypes in UML models or visual features such as cornered associations 

between symbols vs. Bezier-curved associations). We quantified these studies using the type of 

evidence identified in RQ1 (see Figure 1). Results are shown in Figure 2. As can be seen, the 

majority of studies identified in Figure 2 experimentally investigate the comprehension of visual 

features, layout, modeling symbols, and UML stereotypes in order to make concrete proposals for 

easy-to-understand models. By comparison, experimentally investigating the impact of these 

properties on memory or any other stakeholder factor is seldom studied. This plethora of empirical 

evidence is supplemented with less rigorous and also less plentiful evidence based on author 

opinions or experiences or evidence gathered by querying experts.  
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Figure 2. Model properties concerned by specific research methods 

Thus, the evidence on factors influencing model comprehension (i.e., not factors pertaining to 

the modeler or model reader, such as “experience with models”) is largely empirically 

substantiated and often aims to quantify the amount of certain modeling elements or define naming 

conventions for them. An overview over all used factors is given in Table 2. Under “source” 

examples of studies are given which suggest a concrete metric that match the description. Table 2 

also highlights concrete ways to quantify model properties or identifies guidelines which impact 

model comprehension and relates these to similar metrics given a quality property the metrics 

pertain to. In the following, we will discuss findings regarding the impact of these metrics in more 

detail, highlighting common themes in the quality metrics. 

A series of identified primary studies focus on ways to quantify model size and complexity. In 

[49] and [52] emphasis is on the general relationships within a model. Note that while size and 

complexity are closely related concepts, they are not the same: size refers to the number of used 

modeling elements while complexity refers to the number of connections between them. This broad 

focus holds all types of relationships as equally contributing to model complexity. This method 

makes for faster measuring, but it is not clear if all relationship types add equally to model 

complexity. Works such as [50], [51], and [53] measure each individual type of relationship 

separately, giving different weights to different types of relationships. This method allows for a 

more complete and descriptive measurement on cost of complexity of the measurement itself. [62] 

attempts to measure both total relationships and the number of each type. However, while it is 

clear the number of relationships in a diagram has an impact on comprehension; it is less clear if 

there are specific effects for each type of relationship.  

Metrics measuring naming conventions directly attempt to increase comprehension by setting 

out a clear language for a model. There are two primary ideas around this. Firstly (see, e.g., [57]), 

focusing on the development of a set of terms and shorthand clues within a group of modelers and 

readers allows establishing quality guidelines to ease comprehension and communication. 

However, doing so means that model quality is specific to a set of readers and their shared 

application domain, perhaps at the expense of involving external readers or onboarding new team 

members. Through various means a consensus is drawn about the meaning and then applied to all 

models in the company or group. Furthermore, (see, e.g., [38]) models can be constrained in a way 
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similar to how constrained natural language results in less ambiguity in natural-language 

requirements. Doing so leverages ease of comprehension by anyone knowing the modeling 

language, however, reduces the expressive power of the models. 

Table 2. Metrics for model comprehension, quality property (QP) they pertain to, and paper source 

QP Metric Description, Quantification, or Guideline Source 

(example) 

M
o

d
el

 S
iz

e
 

Number of specific relationships to measure complexity of a model, e.g., 1:1 or 1-n 

relationships. 

[50], [54] 

Number of classes and their responsibilities.  [51], [52]] 

Number of aggregations and hierarchies. / Number of used associations.  [49] 

Number of relationships / Zhou’s metric measures relationships but then uses a formula to 

transform the diagram into a weighted graph of relationships to improve comprehension. 

[62], [63], 

[81] 

Size of the model in terms of number of classes, relationships, and aggregations. [62] 

N
a

m
in

g
 Organization-specific guidelines for labeling elements to improve communications and 

understanding. 

[56]  

A set of three different methods of applying style choices, each with a slightly different 

method of explaining and naming elements. 

[38] 

S
em

a
n

ti
cs

 

Guidelines for establishing correct and effective terms and language in a model. A set of 

universal terms that are modified on a company-by-company basis. 

[66] 

Guidelines to create a semiotically clear language and model.  [79] 

The degree to which symbols can be recalled. [48] 

A set of in-company guidelines of effective construction of elements and symbols to be used 

when creating diagrams. 

[56] 

Rufai’s metric to compare the similarity between two models  [81] 

M
o

d
el

 

C
o

m
p

le
x

it
y

 

In’s metric to measure the complexity using relationships by counting the number of roles, 

parameters, and operations. 

[81] 

Number of entry and exit actions in a diagram as an element of complexity that negatively 

affects comprehension. 

[53] 

Amount of information provided to describe or explain the elements in a diagram. [65] 

The degree to which external resources are needed to explain a model. [72] 

The degree of nestedness in a diagram. [46] 

L
a

y
o

u
t 

Proximity of elements in a model. [38] 

Number of nodes and edges. / Proximity of elements. / Number of line bends. [41] 

Number of crossing edges. [55] 

Using Gestalt principles to develop more clear and comprehensible models. [60],[73] 

Proximity of elements. / Use and size of element clusters. / Degree of nestedness of 

elements. 

[76], [77], 

[78], [80] 

U
se

 o
f 

E
d

g
es

 

a
n

d
 N

o
d

es
 

Degree of connectedness of model elements. [39] 

Number of line bends and crosses. / Degree of uniformity of variables. [40] 

Number of edges and nodes. / Names of edges. [47] 

Placement of nodes and edges. / Proximity to nodes and edges. [64] 

Number of forks, joins, and other aspects of edge use. [70] 

Number of gateways, entries, and exits. [74] 

S
te

re
o

-

ty
p

es
 Number of stereotypes. [59], [68], 

[71], [75] 

Degree of cognitive clarity of stereotypes. [76], [77], 

[78], [80] 

Semantic metrics go beyond model feature restrictions. The aim of these metrics is to create 

both a system of labels and symbols, as well as a unique definition of their meaning. This 

eliminates elements with the same meaning as well as elements with redundant concepts, Hence, 

having a similar effect on synonyms and homonyms like constrained naming conventions do. For 

instance, in [66], a wide set of symbols and labels is created that cover as many aspects of the 

universe of discourse as possible, creating a broad set of standards that can then be individually 

modified within a company as needed. Again, this can greatly improve intra-organizational 

communication but run the risk of causing confusion with inter-organizational communication. 
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The work in [79] focuses on streamlining BPMN diagrams for inter-organizational cooperation. 

This includes reducing the number of repeated elements and creating universal shorthand signs. In 

[56], an example of a semiotic language extension in use for a single company is given. This 

provides a good base for further development as it outlines common issues and gives actionable 

solutions. The authors in [48] investigated the recallability of symbols. Setting out clear measure 

of recallability is essential to creating semantically effective languages and signs. The work in [81] 

defines a metric for comparing two models. This aims at reducing overlap and repeated 

information in complex, multi-model projects. By comparing the models, developers can 

understand how much overlap had occurred and improve the model to more specifically explain 

the universe of discourse yet may introduce modeling overhead due to the effort of creating 

multiple models on the same subject matter. 

Nestedness of elements seeks to reduce model complexity by grouping elements into smaller, 

related sections. For instance, [42] and [43] investigated the effect of nestedness in different groups 

of modelers. A critical area of understanding is how effective a given method is at improving 

comprehension. Their results show that nestedness is a key tool for developing effective models. 

The authors in [46] set out to create a set of measurements that can be used to gauge the nestedness 

of a diagram. It also includes metrics to measure the effect of nestedness on comprehension. In 

[44], a critical restriction on nestedness is added. The authors provide a clear use for the previous 

metric. Their results indicate that only a small level of nestedness is effective. Increasing levels 

may decrease comprehension and lead to negative effects.  

Papers concerning the layout seek to optimize the physical location of elements. In [38], a set 

of guidelines on how to place elements when creating a diagram is proposed. The authors compare 

thresholds of too tight or too loose grouping of elements and identify that both may impair a 

reader’s ability to see causal connections between elements. [41] propose a method to quantify 

elements for this purpose, focusing on nodes, edges, and proximity of elements. The work in [55] 

and [57] looks at edge crossing and arrows and the effect on the overall comprehension. In contrast 

to approaches that take element proximity into account, these works assert that minimizing 

crossing lines improves comprehension. In [60] and [73], yet a different stance is taken. These 

sources are the only primary studies identified in our search that use Gestalt principles to improve 

comprehension.  

Use of edges and nodes pertains to factors influencing model comprehension in ways beyond 

the additional complexity that increased use of edges between nodes usually entails. In this sense, 

[39] proposes a set of guidelines aimed at limiting and planning the placement of edges. These 

guidelines measure the proximity of each edge, the overall number, and the number of crosses, 

indicating that these should be limited as often as possible. [40] used eye tracking software to 

confirm the negative effects of line crossing on the ability of a reader to follow the flow of a 

diagram. [47] measures the total number of arcs and nodes and presents guidelines for labeling 

elements. The number of arcs is the same as the number of line bends in other works, such as in 

[64]. In this work, arcs as well as edge and node placement and proximity is quantified. Similarly, 

[69] counts the number of nodes, line bends, edges, and proximity to reduce all of these and 

improve comprehension. A unique approach is taken in [74], where quantification measures the 

number of splits, joins, and edges that can be reduced to improve comprehension. The authors also 

measure the number of gateways, entries, and exits in a diagram. Like other measures, the authors 

indicate that many these elements can decrease comprehension. Yet, therein a tradeoff exists 

between omitting these elements whenever possible while also maintaining the semantic precision 

regarding the subject matter. This is because leaving out, for instance, a diamond-shaped n-ary 

relationship in UML class diagrams and replacing it with, e.g., n binary relationships may increase 

semantic clarity of the relationships. However, this may be at the expense of model complexity 

and at the expense of perhaps no longer adequately reflecting the universe of discourse. 

In this list of model quality properties, stereotypes are the only type of metric in Table 2 that 

pertains to specific model types since stereotypes are mostly used in UML diagrams. Yet, several 

studies have specifically indicated these as impactful means that influences model comprehension. 
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UML already makes some specific suggestions on the use of stereotypes (and in some cases 

requires it), but nevertheless, some studies provide empirical support for their adequate use. 

Examples include [59], [68], and [71]. These studies show that stereotypes can be an effective 

means to increase comprehension by providing further details on the nature of the entity they 

describe. It should be noted that [75] found this effect to be prevalent regardless of experience 

level of the reader of the model. 

Answer to RQ2: Many concrete metrics mostly seeking to quantify model elements have been 

proposed, predominantly to assess size and complexity of the model, and investigate the 

quantification of diagram features such as stereotypes and edge features. Metrics pertaining to 

layout and model semantics resort to hard-to-quantify guidelines and subjective recommendations. 

4.3 RQ3: Quantification and Evaluative Recommendations? 

Some studies are rather explicit how to quantify their proposed metrics. An overview is given in 

Table 2. In the following, we discuss certain metrics that are similar in their quantification. 

[52] breaks down its measurements into three categories, entity metrics, attribute metrics, and 

relationship metrics. Entity metrics measure the number of entities in an ER diagram. Attribute 

metrics measure the number of derived attributes, the number of composite attributes, the number 

of multivalued attributes, and the total number of attributes. Relationship metrics measure the total 

number of relationships, the number of m:n relationships, the number of 1:n relationships 

including 1:1, the total number of non-binary relationships, the number of binary relationships, the 

number of child-parent pairs across all generalization or specialization relationships, the number 

of reflexive relationships, the number of redundant relationships and a specific schema cohesion 

metric that measures the number of relationships that can be reached from a given relationship. 

[54] measures very similar aspects to [52], the number of entities, the number of attributes, the 

number of derived attributes, the number of composite attributes, the number of multi-valued 

attributes, the number of relationships, number of m:n relationships, the number of 1:n 

relationships, the number of n-ary relationships, the number of binary relationships, the number of 

reflexive relationships, the number of IS_A relationships. Both studies focus primary on 

relationships in ER diagrams to measure their size and, indirectly, complexity. The focus is on the 

same measurements in order to identify overly complex diagrams, asserting that smaller, less 

complex diagrams are easier to understand. A concrete evaluative recommendation is not given. 

[51] measures the total number of classes, the number of packages in a system, the total number 

of root classes, the number of responsibilities, number of abstract responsibilities, number of 

immediate subclasses, and the number of dependencies. Many of these are combined into more 

abstract variables to quantify the model quality and make it comparable across the diagrams. 

Similarly, the work in [51] measures the number of associations, number of aggregations which is 

each whole-part pair, number of dependencies, number of generalizations looking at each child-

parent pair, number of aggregations hierarchies, number of generalization hierarchies, the longest 

path from the root of a hierarchy to the class, the longest path from class to leaves, the total number 

of classes, the number of attributes, and the number of methods in the diagram. Again, [50] 

measures the total number of classes, the total number of attributes, the total number of methods, 

the total number of associations, the total number of aggregation relationships within a class 

diagram, the number of dependency relationships, the number of generalization relationships 

within a class diagram, the number of aggregation hierarchies, the number of generalization 

hierarchies, the longest path from root to class in the hierarchy, and the longest path from the class 

to the leaves. Both studies focus on more abstract connections within a diagram as a mode to 

quantify complexity, asserting that smaller models are preferable, yet without describing the 

impact on the model comprehension or a trade-off threshold when comprehension deteriorates. 

The work in [56] takes a different approach and describes a set of naming and labeling 

conventions, rather than a mode of quantification. Twenty-three specific instructions are proposed. 

The goal of these instructions is to improve inter-organizational communication. By streamlining 
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the labels and names of diagram elements every viewer should be able to easily understand the 

diagram. As discussed before, there is no relative or absolute evaluative recommendation on which 

or how many guidelines should predominantly be used. [66] uses several kinds of guides to 

develop clear semiotic guidelines for communicating meaning creating new symbols. This 

framework comprises the goals of the organization, the set of all statements that can be made 

according to the graphemes, vocabulary, and syntax of the modeling language (which the 

framework calls “the language extension”), the domain of the model, the externalized models, the 

relevant explicit knowledge of the stakeholders, and the social actor interpretation. These metrics 

focus on the users understanding of the information presented. In these metrics, the viewers are 

the primary focus of understandability. Creating clear terms and symbols reduces the number of 

symbols used and any overlap. These metrics aim to correct the base language itself as opposed to 

the previous methods which focused on correcting each model as it was created. 

As can be seen, only a small number of concrete relative or absolute guidelines or 

recommendations on which quantifiable model properties to optimize to foster comprehension are 

available. In consequence, there are few recommendations for the modeler to adhere to such that 

the reader is enabled to comprehend a model most easily. Nevertheless, some heuristics are 

proposed in the literature. For instance, [42] and [44] show that experienced users can take better 

advantage of composite states than inexperienced users. This claim is supported in [45]. The same 

authors also recommend that a low level of nesting is the most effective with higher levels affecting 

the comprehension negatively [43]. Heiser and Tversky [57] suggest that arrows as edge 

decoration can improve relationship comprehensibility in certain model types if the language 

allows this. Studies such as [76]–[78], and [80] argue that the use of clustering can improve the 

comprehension of class diagrams, even for nested modeling elements. This is particularly effective 

if stereotypes are used to clarify element composition [71], regardless of experience level of the 

model reader [75]. In an eye tracking study [80], these claims have been empirically supported. 

Larger models have a negative impact on comprehension. Moreover, [59] and [68] show that using 

stereotypes can increase the speed of comprehension as well as the accuracy, suggesting the more 

stereotype use is preferable. 

There is a fine limit in scale. Too many elements make the model are too complex. With too 

few elements the diagram is too vague. While this may seem as an obvious heuristic, the work in 

[82] and [83] has substantiated this subjective impression and recommends finding a suitable 

diagram size depending on the universe of discourse, yet without giving an absolute or relative 

limiting threshold. Similarly, as Purchase et al. show [67], increased amounts of nodes, line bends 

and edges used in a model impact comprehension; as the number increases, comprehension 

decreases. 

Answer to RQ3: Very few concrete quantifiable measures and evaluative recommendations 

exist that would help a modeler to optimize their models for comprehension. Naming conventions 

demonstrably improve inter-organizational comprehension, possibly, at the expense of onboarding 

cost of new team members. Model type specific heuristics exist and are (to some degree) 

empirically validated. 

5 Discussion 

For RQ1, we investigated the field of research on model comprehensibility in terms of considered 

models used and model properties. We found out that, in general, the field has quite extensively 

been researched in the last decades as we found a relatively high number of relevant papers that 

define or investigate some kind of metric to assess the comprehension quality of models. However, 

research is highly concentrated into a few areas, such as UML class diagrams and BPMN diagrams, 

leaving large areas of model-based research unconsidered for model comprehension (e.g., graph 

representations). Regarding model properties, we found research mostly concerned with visual 

features and the impact of layout decisions.  
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For RQ2, we investigated the proposed metrics and their empirical fundament. Studies use a 

wide variety of empirical approaches (e.g., structured expert analyses [39] or empirical 

experiments [38]) to investigate static aspects of specific diagram types. These include the number 

of line bends of connectors in ER diagrams [54], nesting level of states in UML state machine 

diagrams [44], naming of UML modeling elements [61], etc. However, only few of these studies 

provide tangible, operationalizable heuristics, which can be applied in practice (see [60] for a good 

example of heuristics to improve comprehension). Moreover, some findings seem to be 

contradictory. For instance, while [43] suggest avoiding nested states in behavioral diagrams, [78] 

and [58] report that nesting generally improves comprehension. In summary, we found most 

metrics to aim to quantify use of model elements to account for measuring size and complexity of 

models. However, also some metrics of model features that are typically hard to quantify have 

been proposed, e.g., regarding layout and clustering of elements. For these, basic guidelines and 

subjective recommendations are abundant, but almost exclusively require specific instantiation for 

different contexts and subject matters. Similarly, the use of stereotypes and naming conventions, 

appears, is most effectively improving comprehension within specific organizations. 

For RQ3, we investigated how the metrics concretely relate to model comprehension. We found 

only little substance on empirically proven sound recommendation systems for using the proposed 

metrics. For instance, while it is commonly accepted that the number of modeling elements in a 

model has an influence on comprehensibility as metric; it is often recommended to count the model 

elements or certain types of model elements. However, no rules exist, how many model elements 

pertain to a “good”, that is “comprehensible”, model.  

6 Conclusion and Future Work 

In this article, we contributed an analysis of approaches proposing and investigating model factors 

influencing model comprehension and metrics measuring comprehension quality of models by 

means of a systematic literature review. Our findings show that there exist a wide variety of such 

metrics. Our survey thus helps modelers in finding existing guidelines for their situations and 

provides researchers with a basic fundament to build upon further needed research on the effects 

of model comprehension. A limitation to our study is that the literature search concluded in 2018. 

Since then, empirical work on models and modeling processes have emerged, a selection of which 

was discussed in Section 2. Yet, a definitive set of guidelines for modelers remains to be desired. 

It has also shown that further research is needed. Particularly, there is a need to combine existing 

metrics and to establish evaluative recommendation guidelines for using the metrics. There is very 

little guidance for the modelers on when a model is of good comprehension quality. Furthermore, 

the existing quality frameworks discussed in Section 2 are largely abstract and largely stand on 

their own. Albeit some of the same authors proposed further work on model quality and others 

make heavy reference to these frameworks, approaches, or guidance on how to instantiate the 

model quality frameworks by the modeler has yet to be established. Nevertheless, the existing 

model quality frameworks represent a good starting point. The immediate next step in this line of 

research is therefore to establish a knowledge base of existing metrics and the model types they 

are applicable to. In combination with the concrete metrics an instantiation of the frameworks can 

then be created to support modelers in assessing the comprehension quality of their model for a 

potential reader.  
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