
Complex Systems Informatics and Modeling Quarterly (CSIMQ)

eISSN: 2255-9922

Published online by RTU Press, https://csimq-journals.rtu.lv

Article 154, Issue 27, June/July 2021, Pages 1–44

https://doi.org/10.7250/csimq.2021-27.01

Control-Flow-Based Methods to Support the Development
of Sound Workflows

Thomas M. Prinz1⋆ and Wolfram Amme2

1Course Evaluation Center, Friedrich Schiller University Jena, Am Steiger 3,
Haus 1, 07743 Jena, Germany

2Research group Program Analysis and Optimization, Friedrich Schiller University Jena,
Ernst-Abbe-Platz 2, 07743 Jena, Germany

Thomas.Prinz@uni-jena.de, Wolfram.Amme@uni-jena.de

Abstract. Workflows describe sequences of tasks to achieve goals.
These sequences can contain decisions, loops, and parallelisations and
are, therefore, similar to computer programs. Experts in the domain
of workflow application usually design these workflows. However, these
experts are rarely IT experts. For this reason, after automation by a
computer, workflows can exhibit undesired behaviors. Such behaviors
can be expensive and dangerous and should be avoided. The notion of
soundness describes the absence of the undesired behaviors of deadlocks
and abundances. The state of the art in workflow verification can detect
such behaviors, but gives no indication of causes, does not provide
detailed diagnostic information, or is slow. This article introduces
two new compiler-based techniques to find causes of deadlocks and
abundances. These techniques provide detailed diagnostic information
and have a cubic asymptotic complexity of runtime. Their efficiency
and quality is evaluated using a benchmark of over thousand real-world
workflows together with two leading state-of-the-art approaches.
Keywords: Workflow, Verification, Soundness, Causes.

1 Introduction

Processes are omnipresent, whether in public authorities, companies, hospitals, or in everyday
life. In many cases, it is profitable to recognize, observe, and write down such processes. This
contributes to speeding up public authorities, securing corporate goals, and saving the lives
of patients in hospitals. When we formally describe processes, they are called workflows and
they mainly define a sequence of different tasks to achieve a goal [1], [2].

This article uses the following example of a (simplified) process of treating a patient
in a hospital: A patient enters a hospital with complaints. First, the patient is examined
by a doctor. On the basis of this examination, the doctor decides whether the treatment
is simple or not. If it is simple, the doctor will take care of the patient immediately.
⋆ Corresponding author

© 2021 Thomas M. Prinz, Wolfram Amme. This is an open access article licensed under the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0).
Reference: T. M. Prinz and W. Amme, “Control-Flow-Based Methods to Support the Development of Sound
Workflows,” Complex Systems Informatics and Modeling Quarterly, CSIMQ, no. 27, pp. 1–44, 2021. Available:
https://doi.org/10.7250/csimq.2021-27.01
Additional information. Author ORCID iD: T. M. Prinz – https://orcid.org/0000-0001-9602-3482. PII
S225599222100154X. Received: 23 April 2021. Accepted: 21 July 2021. Available online: 30 July 2021.

Otherwise, the doctor will inform the senior physician and start treatment at the same
time to alleviate the symptoms. In the meantime, the senior physician reviews the treatment
and the complaints. If other treatments are required, the senior physician informs the doctor,
who then re-examines the patient. Otherwise, in the simple case, the senior physician will
confirm this to his colleague. During the last examination, the patient is examined again and
the doctor writes the patient’s discharge papers. The patient leaves the hospital.

A domain expert can formalize this process into a workflow in the modeling language
Business Process Model and Notation (BPMN) 2.0 [3]. Figure 1 illustrates the workflow. In
most modeling languages, the workflow is a graph of nodes and edges, with nodes having
different semantics. There are start and end events (circles with thin and thick lines) and
tasks (rectangles) as well as decision nodes (diamonds with crosses) and parallelism nodes
(diamonds with plus signs). In the figure, roles are also shown as lanes with the labels
“patient”, “doctor”, and “senior physician”.

T
re

at
m

en
t

o
f

a
p

at
ie

n
t

in
 a

 h
o

sp
it

al

S
en

io
r

p
h

y
si

ci
an

P
at

ie
n

t Enter the

hospital

Attend the

patient

Simple

treatment

Difficult

treatment

D
o

ct
o

r

Review the

treatment

Attend the

patient by

itself

Final

examination

of the patient

Right

treatment

Wrong

treatment

Leave the

hospital

Examine the

patient

regarding the

complaints

Complaints

TreatmentNew

treatment

Discharge

papers

Discharge

Confirmed

treatment

Figure 1. A workflow in BPMN

Usually, domain experts are not IT experts. For this reason, undesired behavior can
occur in extracted workflows when automated by a computer. Finding these undesired
behaviors in complex workflows is difficult. But in the worst case they can lead to false
or wrong government documents, the non-attainment of business goals or loss of human
lives. Undesired behavior is expensive and dangerous and should be avoided [4]. This article
considers such undesired behaviors and recognizes them before they cause harm.

The state of the art considers different behavioral failures in workflows that lead to
different notions of correctness. The notion used in this article — the soundness — describes
the absence of (local) deadlocks and abundances [5], [6]. In an abundance, the workflow
is in a situation where the same task can be performed undesirably more than once in a
row. A deadlock blocks partly the execution of a workflow so that the workflow cannot be
successfully terminated.

The workflow of Figure 1 contains undesired behavior in the form of abundances and
deadlocks and is unsound. A deadlock occurs, for instance, when the treatment of the patient
is simple. Figure 2 illustrates this fact on a simplified version of the workflow — the execution
(represented by a bold grey path) is blocked in front of the right diamond with a plus sign.
This happens since this node tries to synchronize the parallelism, which, however, does not
exist.

To avoid undesired behavior in workflows, various techniques can be applied to determine
deadlocks and abundances. In general, they take into account situations that can be reached

2

in workflows. But sometimes any number of such situations are possible, so some of these
techniques do not finish [4]. The more crucial problem, however, is that most techniques
consider only the errors instead of the faults [7], [8]. In other words, the techniques find only
deadlocks or abundances instead of the reason “why” they happen. But we need that why
to locate the modeling failures and repair the workflow. The derivation of the fault from
an error is difficult due to the fault distance known from software quality. Also, algorithms
cannot find all errors since they are hidden by previous errors. For instance, a deadlock can
block the reaching of another error [9]. In other situations, unnoticed errors can repair and
mask another error [7], which is therefore hidden. Sometimes the fault cannot be determined,
because the undesired behavior does not seem to fit the fault, e. g., a deadlock was detected
whose origin is an abundance fault, fault illusion [10]. The interested reader can learn more
about fault blocking, masking, distance, and illusion in previous work [11].

Enter the

hospital

Attend the

patientSimple

treatment

Difficult

treatment

Review the

treatment

Attend the

patient by

itself

Final

examination

of the patient

Right

treatment

Wrong

treatment

Leave the

hospital

Examine the

patient

regarding the

complaints

Discharge

Figure 2. A deadlock (grey path) in the example workflow

If the soundness checkers only detect errors such as deadlocks and abundances instead
of their faults: How should a developer know, what is the reason for undesired behavior
and where is its cause? This article answers these questions for the first time to the best
of the authors’ knowledge. It shows that workflows are sound if they have neither causes
of abundances nor deadlocks. In addition, the article presents two algorithms that find
causes of abundances and deadlocks in cyclic workflows. These algorithms have the following
properties:

1. Their runtime is O(E3) with E being the number of edges of the workflow.
2. They provide accurate and detailed diagnostic information.
3. They detect causes of deadlocks and abundances behind other causes of deadlocks and

abundances.

This article has the following structure: After the introduction, Section 2 repeats the
basics of workflows. Section 3 gives an overview of the state of the art in soundness checking.
Subsequently, Section 4 explains partial analyses of workflows. Section 5 examines causes
of deadlocks, while Section 6 focuses on causes of abundances. Section 7 introduces our
analysis tool Mojo. This tool is then used in an evaluation (Section 8). The article ends with
a conclusion and a look at the future work in Section 9.

2 Preliminaries

This section introduces the notions used in this article.

3

2.1 Multisets
A multiset describes a set-like construct where each element can appear more than once. Each
multiset M over a set S is a total function from S to the natural numbers N (M : S 7→ N).
Therefore, M applies a natural number to each element of S that describes the absolute
frequency of each element in M . We write 〈m0, . . . , mk〉, k ≥ 0, {m0, . . . , mk} ⊆ S [12].
For instance, M ′ = 〈a, a, b, b, b, d〉 is a multiset over {a, b, c, d} with M ′(a) = 2, M ′(b) = 3,
M ′(c) = 0, and M ′(d) = 1. The support Support(M) of M is defined as {m ∈ S : M(m) ≥ 1}.
It describes the set of all elements of S that appears at least once in M . Each m ∈ Support(M)
is also called element of M , m ∈M . As for the last example, Support(M ′) = {a, b, d} is the
support of M ′ and a, b, d ∈M ′, c /∈M ′.

Multisets can be used like normal sets. The operations ⊆, ∩, ∪, and \ are naturally defined
as follows (inspired by Rosen [13] and Reisig [12]):

M ⊆ O ⇐⇒ ∀m ∈ Support(M) : M(m) ≤ O(m) O is a multiset
M ∩O = C ⇐⇒ ∀m ∈ Support(M) : C(m) = min(M(m), O(m)) O, C are multisets
M ∪O = V ⇐⇒ ∀m ∈ (Support(M) ∪ Support(O)) : V (m) = M(m) + O(m) O, V are multisets
M \O = K ⇐⇒ ∀m ∈ Support(M) : K(m) = max

(
M(m)−O(m), 0

)
O, K are multisets

Operations between multisets and ordinary sets are easily possible by converting the sets
to multisets before applying an operation. This is done implicitly throughout this article. For
the two multisets M1 = 〈a, a, b, b, b, c〉 and M2 = 〈a, a, a, b, b, b, b, b, c, d, d〉, the introduced
operations result in:

M1 ⊆M2 M2 6⊆M1 M1 ∩M2 = M1 = 〈a, a, b, b, b, c〉
M1 ∪M2 = 〈a, a, a, a, a, b, b, b, b, b, b, b, b, c, c, d, d〉 M2 \M1 = 〈a, b, b, d, d〉

2.2 Graphs and Paths
A directed graph (digraph) G consists of a set N = N(G) called the nodes of G, and a set
E = E(G) of ordered pairs, E ⊆ N × N , called the edges of G [13], [14], [15]. We write
G = (N, E). For an edge e = (s, t) ∈ E, s is the source of e, s = src(e), and t is the target
of e, t = tgt(e). The incoming edges of a node n define the set of edges with n as target:
▷n = {(p, n) = e ∈ E}. Similarly, n◁ = {(n, s) = e ∈ E} describes all outgoing edges of n.

A path P of G is a sequence (e0, . . . , em), m ≥ 0, of edges of E, where each target of an
edge corresponds to the source of the next edge in sequence: ∀0 ≤ i < m : tgt(ei) = src(ei+1)
[16]. An edge e is an element of P if it is part of P ’s sequence, e ∈ P . The length of P is
the length of the sequence, |P | = m. The notion Pa→b is used to describe a path from a to b.
In this context, Pa→b describes the set of all paths from a to b. Each path, in which an edge
appears twice, has a loop. A graph is called cyclic if there is at least one path with a loop.
Otherwise, the graph is called acyclic.

Control-flow graphs are a special subset of all graphs (e. g., Zima et al.[17]). A control-flow
graph CFG = (N, E) is a digraph (N, E) with the following properties:
1. There is exactly one start node nStart without any incoming edge, ▷nStart = ∅, but with

exactly one outgoing edge, nStart◁ = {eStart}, the start edge.
2. There is exactly one end node nEnd with exactly one incoming edge, ▷nEnd = {eEnd}, the

end edge, but without any outgoing edge, nEnd◁ = ∅.
3. Each edge e ∈ E lies on a path from eStart to eEnd : ∀e ∈ E : ∃P ∈ PeStart→eEnd : e ∈ P

An example control-flow graph is shown in Figure 3. It consists of the nodes n1, n2, . . . , n15
and the edges (n1, n2), (n2, n3), . . . between these nodes. The start node is n1 and the end
node is n9. The start edge is (n1, n2) and the end edge is (n8, n9). Obviously, each edge lies
on a path of P(n1,n2)→(n8,n9).

4

n1 n3

n13

n5 n6

n4n2

n12

n10 n11

n14

n7

n8 n9

n15

e1 e2 e3 e8 e10

e6

e13 e14

e8

e5

e4 e11

e12 e15

e16

e17

e7

Figure 3. A control-flow graph

2.3 Workflow Graphs
Workflow graphs are simplifications of complex workflows for control-flow analysis. They
were introduced by Sadiq and Orlowska [5] and later formalized by other researchers. The
definition in this article is based on control-flow graphs:
Definition 1 (Workflow graph). A workflow graph WFG consists of a control-flow graph
(N, E) and a total function

l : N 7→ {Start, End, Task, Split, Merge, Fork, Join} (1)

that assigns a label to each node. The label defines the kind of node and its semantics. A
workflow graph is written as WFG = (N, E, l). The set of nodes consists of distinct subsets:

N = {nStart , nEnd} ∪NTask ∪NSplit ∪NMerge ∪NFork ∪NJoin (2)

All nodes of the same set have the same label:

l(nStart) = Start, the start node l(nEnd) = End, the end node
∀n ∈ NTask : l(n) = Task, the task nodes ∀n ∈ NSplit : l(n) = Split, the split nodes
∀n ∈ NMerge : l(n) = Merge, the merge nodes ∀n ∈ NFork : l(n) = Fork, the fork nodes
∀n ∈ NJoin : l(n) = Join, the join nodes.

Furthermore, WFG has the following properties:
1. Each task node of NTask has exactly one incoming and exactly one outgoing edge.
2. Each split and fork node of (NSplit ∪ NFork) has exactly one incoming and at least two

outgoing edges.
3. Each merge and join node of (NMerge∪NJoin) has at least two incoming edges and exactly

one outgoing edge.
Each kind of node has a special symbol if the workflow graph is visualized (cf. Figure 4).

Start and end nodes are illustrated as (bold) circles. Unfilled rectangles mark task nodes.
Split and merge nodes are (bold) diamonds. Filled rectangles indicate fork and join nodes.
They can be distinguished by their numbers of incoming and outgoing edges. Although both
split and merge nodes and fork and join nodes have similarities, they differ in their behavior,
i. e., split and merge nodes process decisions in workflow graphs and fork and join nodes
create and consume parallelism.

The behavior of workflow graphs is defined by the labels of the nodes. It is a common
standard to use Petri net semantics to mathematically define the semantics of workflow
graphs. The following definitions (Definition 2 to Definition 5) are based on the work of
Vanhatalo et al. [18] and Völzer [19]. In the first place, the semantics consider execution
situations — states — and the transitions between these situations.

5

S T1 E

M2

F 1

S1 J 1

S2

M1

T5

T2

T4

T3

T6

Task

Merge

Start

Split

End

Fork
Join

Figure 4. A workflow graph with its different node visualizations

Definition 2 (State). A state of a workflow graph (N, E, l) is a multiset S over the set of
edges E. It assigns to each edge e ∈ E a natural number m of tokens, m = S(e). The set of
all (arbitrary) states over E is designated with S(E).

An edge e of a workflow graph carries, owns, or simply has a token in a state S if S(e) ≥ 1.
Tokens are represented as filled black circles at the edges. For instance, the workflow graph
in Figure 5 is currently in the state S = 〈(T4, M2), (S2, T6)〉. Special cases of states are the
initial state, in which only the start edge eStart carries exactly one token, and the termination
state, in which only the end edge eEnd has exactly one token. If nodes have tokens at their
incoming edges, they can be executable:

S T1 E

M2

F 1

S1 J 1

S2

M1

T5

T2

T4

T3

T6

Figure 5. A workflow graph in a state with tokens at edges (T4, M2) and (S2, T6)

Definition 3 (Executability). Let (N, E, l) be a workflow graph in a state S. The start
and end nodes are never executable. All other nodes n ∈ N \ {nStart , nEnd} are active if they
have at least one incoming edge that carries a token. They are executable in S iff either 1) n
is active and not a join node, or 2) all of n’s incoming edges have at least one token:

n is executable in S ⇐⇒
(
n /∈ NJoin ∧ ▷n ∩ S 6= ∅

)
∨

(
▷n ⊆ S

)
.

Exec(S) is the set of all executable nodes in state S:

Exec(S) = {n ∈ N : n is executable in S}.

The nodes T6 and M2 of the workflow graph in Figure 5 are currently executable in the
state S, Exec(S) = {M2, T6}. The join node J1, however, can only be executed in any state
S ′ ⊇ {(T3, J1), (S2, J1)}. Therefore, the executability of join nodes is specific for workflow
graphs. If a node is executable, the state can transit to another state:

Definition 4 (State transitions). Let S be a state of a workflow graph WFG = (N, E, l)
and n ∈ N be an executable node. After executing n, WFG changes into S ′, written S

n→ S ′.
The state S ′ is defined for the node n as follows:

6

n ∈ (NTask ∪NFork ∪NJoin): From each incoming edge of n, one token is removed, and at
each outgoing edge of n, an additional token is placed: S ′ = (S \ ▷n) ∪ n◁

n ∈ (NSplit ∪NMerge): From exactly one incoming edge in of n with a token, one token is
removed, and at exactly one randomly chosen outgoing edge out, an additional token is
placed: S ′ = (S \ {in}) ∪ {out}, in ∈ (▷n ∩ S), out ∈ n◁

For instance, either T6 or M2 can be executed in state S of the workflow graph in Figure 5
non-deterministically. If the node T6 is executed, S changes to the state S ′, S

T6→ S ′, S ′ =
〈(T4, M2), (T6, M1)〉.

Definition 3 and Definition 4 specify the semantics of the different kinds of nodes and
thus of workflow graphs. In summary, it can be said that the start and end node have no
semantics. They only mark where the execution begins and ends. With the exception of join
nodes, all nodes can be executed if at least one incoming edge has at least one token. A task
node would take a token from its incoming edge and place a token on its outgoing edge.
Split and merge nodes make non-deterministic decisions. A split node takes a token from its
incoming edge and puts it randomly on one of its outgoing edges. Merge nodes randomly
take one token from one of their incoming edges (with at least one token) and place it on
their outgoing edge. Fork nodes also take a token from their incoming edge, but set a token
on each of their outgoing edges. Therefore, there is a parallelism after the execution of a fork.
This parallelism can be synchronized by a join node. Such a join node can only be executed
if each of its incoming edges has at least one token. During its execution, it picks a token
from each of its incoming edges. It then places an additional single token on its outgoing
edge.

The semantics of the different kinds of nodes follows the common semantics of workflow
graphs in the literature (defined by Sadiq and Orlowska [5]). To simplify notions and proofs,
the notion reachability is useful:

Definition 5 (Reachability). Let (N, E, l) be a workflow graph. A state Sto is strictly
reachable from a state Sfrom (written Sfrom → Sto) if there is an executable node n in Sfrom
whose execution ends in state Sto. Sto is reachable from Sfrom (written Sfrom →∗ Sto) if there
is a sequence of states S0, . . . , Sm, m ≥ 1, such that S0 → S1 → . . . → Sm−1 → Sm and
S0 = Sfrom, Sm = Sto. The state-space of a workflow graph is defined by the strictly reachable
relation.

2.4 Soundness
The soundness property defines a correctness criterion for workflow graphs [20]. It describes
the absence of (local) deadlocks and synchronization lacks [5].

Definition 6 (Deadlock). A state Sdead 6= SEnd , Sdead ∈ S(E), of a workflow graph
(N, E, l) is a deadlock if there is an active node n in Sdead that is not executable in each
reachable state. That means, n can only be a join node. We also say that n has a deadlock
in Sdead. This is called a local deadlock in Fahland et al. [4].

For instance, the workflow graph in Figure 6 a) is in a deadlock 〈(T3, J1)〉 because the join
node J1 is not executable.

Definition 7 (Abundance). A lack of synchronization describes a state Sabu ∈ S(E) of a
workflow graph (N, E, l), in which at least one edge carries more than one token. Since the
term lack of synchronization describes the origin of the error situation and not the situation
itself, we prefer the term abundance and will use it throughout the rest of this article.

The workflow graph in Figure 6 b) is present in an abundance since the edge (M2, T3) has
two tokens.

7

S

T1 E

M2

F 1

S1 J 1

S2

M1

T5

T2

T4

T3

T6

S

T1 E

M2

F 1

S1 J 1

S2

M1

T5

T2

T4

T3

T6
a) b)

Figure 6. A workflow graph in a deadlock a) and an abundance b)

Definition 8 (Soundness). A workflow graph is sound if neither a deadlock nor an
abundance is reachable from the initial state.

Our example workflow graph is not sound. The definition of soundness is valid only with
the assumption of fairness. Fairness means, in our context, that non-deterministic decisions
are made non-deterministically and, therefore, loops terminate in sound workflow graphs [6],
[21], [22], [23]. Throughout the rest of this article, fairness is assumed.

3 State of the Art

The behavioral analysis of workflows has a long tradition and is meanwhile applicable to
real workflows [24]. One of the best known behavioral notions is soundness, which was firstly
introduced by Van der Aalst [25]. Soundness has evolved to this day leading to many variants,
e. g., the relaxed or weak soundness (the reader can find a good overview of the variants in
Puhlmann [26] and Van der Aalst et al. [27]). As already mentioned, this article considers the
classical definition of soundness by Van der Aalst [6]. Van der Aalst defined the soundness
on special Petri nets with exactly one start and exactly one end place — workflow nets. A
workflow net is sound if and only if for each reachable state the termination state is reachable
(there is no deadlock), the end place carries a token only in the termination state (there is
no abundance) and no transition is dead.

With the rank theorem [28], the soundness property of workflow nets can be checked by
considering the properties liveness and boundedness [6]. Liveness corresponds to the absence
of deadlocks and boundedness belongs to the absence of abundances. The advantage of this
approach is the application of well-known Petri net theory to workflows. Furthermore, the
runtime behavior is cubic O(N3) with N being the maximum number of places, transitions,
and edges [29]. However, its disadvantage is the lack of diagnostic information to describe the
violations of soundness [30]. For this reason, new models and approaches for the description
and verification of workflows have been developed so far. They are briefly presented further
in this section.

3.1 Formal Models

Workflow graphs [5] are the most noted formal model for describing workflows alongside
workflow nets. They are similar to control-flow graphs, but allow explicit parallelism. Like
workflow nets, workflow graphs abstract from the real workflow and contain only those parts
that are important for describing the control-flow.

Van der Aalst has shown that every acyclic workflow graph has a semantically equivalent
Free Choice Petri net [31]. Therefore, the rank theorem can also be applied to workflow
graphs. Favre et al. later showed the equivalence between arbitrary workflow graphs and
workflow nets [32]. However, workflow graphs are easier to extend by new control-flow

8

elements (such as OR-join nodes) [32], whose semantics cannot be formalized by a token game
that easy. This disadvantage of workflow nets motivated Van der Aalst and Ter Hofstede
to develop the workflow modeling language Yet Another Workflow Language (YAWL) [33].
Starting from different business workflow modeling languages, they extended workflow nets
with missing but often used control-flow elements such as cancellation patterns.

Chrza�stowski-Wachtel et al. proposed a semantically similar way of cancellation patterns
[34]. In their work, they also introduced a new method to describe workflows: their description
as trees. In these trees, children of a node describe refinements similar to sub-processes. They
create a hierarchical order of the nodes of a workflow. Chrza�stowski-Wachtels et al. propose
to construct a workflow by a stepwise refinement. If the developer applies sound structures
in each step, then the resulting workflow is also sound. However, Chrza�stowski-Wachtel et
al. missed to show how an already existing workflow can be decomposed.

3.2 Soundness Check With Decomposition

A decomposition of a workflow into a tree was examined by Vanhatalo et al. [18] with
the introduction of the Process Structure Tree (PST) as a result of decomposition into
Single-Entry-Single-Exits (SESE). The advantage is that developers can create the workflows
as usual and a tool derives the PST. The derived PST is hidden from the developer, but
can be used for analysis. Vanhatalo et al. use simple rules and heuristics as analyses, which
are unfortunately incomplete when parts of the tree (the SESE fragments) are unstructured
[18]. Besides this disadvantage, SESE decomposition has many advantages: applied analyses
lead to a high quality of the diagnostic information, arbitrary analyses are possible, and the
decomposition is fast. It is possible to detect causes of the errors (faults) for each fragment
instead of just the error. This is also possible for faults, which are never reached at runtime
(e. g., because an earlier deadlock hinders them). Since each fragment is a workflow again,
any analyses can be applied to it. Therefore, it is possible to use other approaches for
unstructured fragments.

The asymptotic runtime behavior of the SESE decomposition depends on the time in which
the workflow is decomposed and the PST is built. Both steps have their origin in the works
of Johnson et al. [35], [36] about Program Structure Trees for ordinary computer programs.
Ananian improved the methods of Johnson et al. for his Single Static Information Form
[37]. For this reason, the approach of Vanhatalo et al. [18] is the first to consider workflows
as control-flow graphs. They later refined the approach by finding more detailed fragments
based on the 3-connectedness [38]. Such 3-connected fragments have exactly one incoming
and one outgoing edge. They can be detected with the efficient linear-time algorithm of
Hopcroft and Tarjan [39] for control-flow graphs. Since the detected fragments are more
detailed than the original SESE fragments, a more detailed failure diagnosis is possible.
It is also possible to rearrange workflows using these detailed fragments [40]. In addition,
tools can automatically close incomplete fragments with a matching convergent node. The
approach of Chrza�stowski-Wachtel et al. [34] can have a revival. Kühne et al. [41] showed its
practical benefit. It was possible to obtain diagnostic information during the construction of
workflow graphs.

3.3 Model-Checking and Rank Theorem

The disadvantage of decomposition is its incompleteness. Model-checking is certainly the
most popular alternative approach. For verification of workflows it was first used by Van
der Aalst [42]. Model-checking describes an efficient exploration of the state-space of the
workflow. The state-space contains all reachable states and the transitions between them.
The fundamental problem of state-space exploration is its complexity. Even small graphs

9

can have an unbounded state-space — a state-space explosion [4], [43]. There are approaches
to limit the state-space. For instance, explorations replace unbounded growing numbers
of tokens with an identity element. The resulting state-space is a Coverability Tree [23],
whose construction is EXPSPACE-hard [44]. However, it halts and therefore always leads
to diagnostic information. The diagnostic information consists of the state transitions to
the first erroneous state. Lohmann and Fahland also tried to reduce the state-space [45].
Their goal was to explore the decisions of split nodes that lead to erroneous behaviors.
Unfortunately, this approach was not pursued to the end.

For state-space explorations, there are two well-known tools: Woflan [46] and LoLA
[47]. Verbeek et al. have developed Woflan and it is today the most complete tool for
checking workflow nets. In addition to other quality criteria, it also checks soundness. For
that, it tries to minimize the workflow net. If the resulting net is trivial, then it is sound.
Otherwise, Woflan decides on the S-coverability whether there can be diagnostic information
or not. S-coverability describes the ability to decompose the workflow net into S-components.
S-components are minimal sets that contain all direct predecessors and successors of each
place [28]. If decomposition is possible, the workflow net is free of abundances. Otherwise,
the workflow net is unsound, however it is not known whether there is a deadlock or
an abundance. Deadlocks are determined with the help of a state-space exploration for
free-choice workflow nets. For this reason, Woflan also uses an EXPSPACE-hard algorithm.
The work of Fahland et al. underlines this fact in a comparison of three approaches for
soundness checking [4]: state-space exploration with LoLA, SESE decomposition with the
IBM WebSphere Business Modeler, and S-coverability and state-space exploration with
Woflan. Their main finding was that for most real workflows, soundness checking is possible
in a short period of time. But the state-space-based approaches also showed that they cannot
consider each of the 1,386 workflows because they took too much time or did not finished.

The mentioned tool LoLA is an analyzer for simple Petri nets. It is a general tool
for model-checking and has not been developed specifically for soundness. LoLA accepts
the properties to be tested as formal equations, e. g., the equation for finding abundances
contains the condition that in at least one state at least one place has more than one token.
Formal equations are checked by various reduction methods of the entire net and subsequent
state-space explorations.

There are other approaches to soundness checking based on reduction methods. For
instance, Sadiq and Orlowska [5] used reduction rules to find deadlocks and abundances.
These rules eliminate start and end nodes, combine sequences of nodes to a single edge, etc.
If the resulting graph has only one node, the workflow is sound. Otherwise, it is unsound.
Although the asymptotic runtime behavior O(E2) seems promising, Van der Aalst showed
that they are incomplete [31].

Eshuis and Kumar criticize the state-space exploration and rank theorem approaches for
their poor fault localization [48]. Instead, they use instance graphs to show soundness, with
instance graphs representing possible executions of a workflow graph [5]. The instance graphs
are derived with Integer Programming and represent errors if the graph does not contain all
of a join node’s direct predecessors — a deadlock — or more than one direct predecessor
of a merge node — an abundance. However, this approach is bound to acyclic workflow
graphs, cannot find faults behind other faults, and has an exponential runtime. Although
the implementation in DiagFlow3 is faster than Woflan [46], the time spent is not acceptable
for immediate fault feedback.
3 http://is.ieis.tue.nl/staff/heshuis/DiagFlow/ (Mai 2019)

10

http://is.ieis.tue.nl/staff/heshuis/DiagFlow/

3.4 Pattern- and Compiler-Based Approaches

Approaches that take into account the structure of workflows such as compilers are
alternatives to model-checking. The most famous approach is the SESE decomposition.
However, the literature also knows other compiler-based approaches, as will be shown in
the following.

For instance, Van Dongen et al. have defined two relations (referred to as causal footprints)
[49], the first claiming for an executed node that each node in relation is executed too;
and the second claiming that an executed node was executed after at least one node in
relation. Based on these causal footprints, Dongen et al. defined three erroneous patterns for
deadlocks, abundances, and non-terminating loops. Unfortunately, only for non-terminating
loops was it shown that the workflow is unsound. For both other patterns, it is uncertain
whether there is a deadlock or abundance.

Favre created another algorithm for soundness checking in acyclic workflow graphs
on patterns and relations [30]. He defined an always-parallel-relation between the edges
for deadlocks, which is determined by a kind of data-flow analysis that propagates the
information throughout the workflow graph. The relation helps to know whether all incoming
edges of a join node are always in parallel or not. If they are not always in parallel, a
deadlock is possible. For abundances, he defines a perhaps-parallel-relation. If an abundance
is impossible, all two incoming edges of merge nodes cannot be in that relation. Although
the approach provides good diagnostic information and is possible in polynomial runtime
complexity, limiting it to acyclic graphs is not practicable and the finding of faults behind
other faults is not always possible.

Favre et al. proposed another approach based on anti-patterns [50]. The patterns are
similar to those of Dongens et al. [49], however apply to cyclic workflows. Favre et al.
show that the existence of such an anti-pattern makes a workflow unsound. If a workflow is
unsound, a failure diagnostic starts. This diagnosis determines the subgraph, which belongs
to the failure, using the rank theorem and other approaches. The runtime behavior of the
approach is quintic, but the approach leads to very good diagnostic information. But it only
finds one error per workflow.

4 Partial Analysis and Entry Points

The aim of this research is to find methods that provide diagnostic information about
deadlocks and abundances in high quality and quantity. Figure 7 shows a workflow graph that
can easily be divided into two subgraphs (visualized by the dashed boxes). Each execution of
the left subgraph ends in a deadlock in the join node J . On the contrary, each execution of the
right subgraph ends in an abundance at an edge after the merge node M . Any consideration
of the workflow graph from the initial state, however, would only end in a deadlock, so
that the abundance is not reachable. Since the abundance is reachable immediately after
the repair of the left part of the workflow graph, it would be useful to know the abundance
already at repair time. Classical state-space exploration fails in this task since it discovers
only reachable states.

S

A2

A3

A1

EA6A0 M

A5

A4

S FJ

Figure 7. A workflow graph whose execution is blocked in the join node J

11

Our basic approach is to start the examination of workflow graphs (similarly to the SESE
approach) from different points of the graph — the entry points. Unlike the SESE approach,
an entry point could be any edge of the workflow. The advantage is that the entry point
approach also applies to unstructured workflows. However, the search for good entry points
is much more difficult than for SESE.

4.1 Computations and Control-Flows

Before considering different entry points, some terms should be clarified. For instance,
different executions of a workflow were discussed. This commonly used term can be refined
in the notion of computations (based on Kindler and Van der Aalst [22]):

Definition 9 (Computation). Let (N, E, l) be a workflow graph in a state S0. Any long
sequence of strictly reachable states

S0 → S1 → S2 → . . . S0, S1, S2, . . . ∈ S(E) (3)

is a computation cS0 starting in S0 iff for each Si, i ≥ 0, there is a strictly reachable Si+1
or this sequence is maximal. If the length of computation is bounded, then the computation
is finite. Otherwise, it is infinite. All possible computations starting in S0, c0

S0 , c1
S0 , . . .,

comprises the set CS0 = {c0
S0 , c1

S0 . . .}. We write S ∈ cS0 if S is a state in the sequence of cS0 .

For instance, starting in the state
〈
(A1, M), (M, A6)

〉
in Figure 7,

(〈
(A1, M),

(M, A6)
〉
,
〈
(A1, M), (A6, E)

〉
,
〈
(M, A6), (A6, E)

〉
,

〈
(A6, E), (A6, E)

〉)
is a valid computation.

However,
(〈

(A1, M), (M, A6)
〉
,
〈
(A1, M), (A6, E)

〉
,
〈
(M, A6), (A6, E)

〉)
is not a valid

computation since the state
〈
(A6, E), (A6, E)

〉
is reachable from the last state and, therefore,

the computation is not maximal.
Since computations start in individual states of a workflow graph, the behavior of the

workflow can be considered in different situations. However, not every computation start
considered can be reached from the initial state. This would lead to false positive and false
negative analysis results. Consideration of computations that begin in states with a single
token avoids this problem. In the following, we are therefore interested in computations that
start with a single token. We call them control-flows:

Definition 10 (Control-flow). A control-flow fe from an edge e of a workflow graph
(N, E, l) is a computation c〈e〉 starting in a single-token state 〈e〉. Let all possible control-flows
f 0

e , f 1
e , . . ., of the edge e be in the set Fe = {f 0

e , f 1
e , . . .} = C〈e〉.(〈

(A1, M)
〉
,
〈
(M, A6)

〉
,
〈
(A6, E)

〉)
is a valid control-flow of the edge (A1, M) in Figure 7.

As can be seen in this example, a control-flow of an edge e describes possible states that
result from a single token on e. Therefore, it also describes at which other edges a token
could get to when starting at e.

Remark 1 (Path on control-flow). Let (N, E, l) be a workflow graph. If an edge a gets a
token in at least one control-flow fe ∈ Fe of an edge e, then there is a path from e to a.

Theorem 1 (Control-flow on a path). Let e, a ∈ E, e 6= a, be two edges of a workflow
graph (N, E, l).

There is a path P from e to a (4)
=⇒

∃fe ∈ Fe :
(
∀b ∈ P : b gets a token in fe ∨ ∃S ∈ fe : S is a deadlock

)
(5)

12

4.2 Partial Analysis
Control-flows are suitable for local, i. e., partially, considerations about the behavior of
workflow graphs. Due to the explicit assumption that exactly one token lies on exactly one
edge, it is possible to simulate what can happen if this edge receives a token in a computation.
The consideration of single edges with their control-flows is so isolated that each edge can
be regarded as entry point for an analysis. Therefore, an entry point is any edge at which a
single token is assumed. The advantages of considering single edges as entry points are:
1. It is simple and not as complex as determining a set of edges as entry points.
2. Each control-flow of an entry point is part of at least one computation where a token

reaches that entry point.
The following two theorems describe the second advantage:

Theorem 2. Let e ∈ E be an edge (an entry point) of a workflow graph (N, E, l) in a state
S, e ∈ S.

let fe ∈ Fe (6)
=⇒

∃cS ∈ CS : ∀Se ∈ fe : ∃Sc ∈ cS : Se ⊆ Sc (7)

Figure 8 shows an example of a workflow graph in the state 〈k, o〉 = S. There is a
control-flow (〈k〉 , 〈f〉 , 〈g〉) = fk from edge k. On the basis of Theorem 2, there is
at least one computation cS ∈ CS, which contains this control-flow. An example of cS is:
(〈k, o〉 , 〈f , o〉 , 〈g, o〉 , 〈g, p〉 , 〈g, c〉 , 〈g, d〉 , 〈g, e〉 , 〈g, f〉 , 〈g2〉) = cS.

If a computation cS ∈ CS starting in state S contains a control-flow fe ∈ Fe, e ∈ E,
then for each state of fe, there is a state in cS that is a superset of it, formally: ∀Sf ∈
fe : ∃Sc ∈ cS : Sf ⊆ Sc . And for each edge with a token in a state S exists a control-flow
that is contained in a computation starting in S:

Theorem 3. Let (N, E, l) be a workflow graph in a state S ∈ S(E).

let cS ∈ CS (8)
=⇒

∀e ∈ S : ∃fe ∈ Fe : ∀Sf ∈ fe : ∃Sc ∈ cS : Sf ⊆ Sc (9)

The control-flow (〈k〉 , 〈f〉 , 〈g〉) = fk of the edge k of Figure 8 is part of the following
computation, as previously mentioned: (〈k, o〉 , 〈f, o〉 , 〈g, o〉 , 〈g, p〉 , 〈g, c〉 , 〈g, d〉 , 〈g, e〉 ,
〈g, f〉 , 〈g2〉). The control-flow of edge o within this computation is: (〈o〉 , 〈p〉 , 〈c〉 , 〈d〉 ,
〈e〉 , 〈f〉 , 〈g〉).

Theorem 2 and Theorem 3 are the formal basis of our approach of using different entry
points as starting points for analyses. They can be used to identify errors behind other errors.
For instance, if there is an abundance in a control-flow of an entry point, then that abundance
is possible for any computation that puts a token at this entry point. If a control-flow of the
start edge puts a token at this entry point, an abundance is also possible. If there is no such a
control-flow of the start edge that puts a token at that entry point, then the workflow graph
has a reachable deadlock (because of Theorem 1). Furthermore, in this case, the approach
finds a possible error behind the deadlock. In both cases, the workflow graph is not sound
anyway. Since earlier errors can hide (mask) later errors at runtime, the latter are called
potential errors. However, if there is a deadlock in a control-flow of an entry point, then this
deadlock must not manifest itself in any computation. This is possible because the token at
the entry point may always appear with other tokens at other edges, which can avoid the
deadlock. In this case, the quality of deadlock analysis depends on well selected entry points.

13

S T1 E

M2

F 1

S1 J 1

S2

M1

T5

T2

T4

T3

T6

a b c

d e f g

h

i

j

k

l m n

op

Figure 8. The example workflow graph in state 〈k, o〉

5 Causes of Deadlocks

A workflow graph is unsound if a deadlock is reachable from the initial state. The
determination of all these deadlocks is possible, e. g., taking into account the entire
state-space of the workflow graph. However, such a state-space exploration is very
time-consuming. Furthermore, the quality and quantity of fault information can be improved,
as they only contain the errors instead of faults as explained before and highlighted as a
problem in previous work [11].

It is our goal to provide immediate diagnostic information about deadlocks. Therefore,
the following approach renounces from finding all reachable deadlocks from the initial state.
Instead, the approach considers the causes of the deadlocks, since many deadlocks can be
reached from a single fault. The advantage is that workflows can be repaired by eliminating
the causes of deadlocks.

Two basic cases separate causes of deadlocks: A join node receives either 1) not enough
tokens or 2) too many tokens. In the second case, the join node executes, however, blocks
subsequently since tokens remain at its incoming edges. This kind of deadlock has a preceding
abundance. In the first case, in which a join node does not receive enough tokens, there are
two subcases: Either 1a) there are not enough tokens during the execution of the workflow
graph, or 1b) another deadlock prevents the arrival of the required tokens. Note that in the
case of 1b) there must be a preceding deadlock. Therefore, a deadlock is only independent
of other errors in case 1a). As a consequence, a workflow graph is sound if it neither has
deadlocks of type 1a) nor an abundance: It is sufficient to find all causes of type 1a) deadlocks.

Figure 9 shows a simple and sound workflow graph. It can be observed that the join node
J never blocks. This happens since the fork F guarantees the execution of this join node.
Each node that guarantees the execution of a join node is called an activation point. The
incoming edges of activation points are similarly called activation edges. The basic idea is
that a single join node never gets into a deadlock if there is such an activation edge on every
path to that join node. Otherwise, the potential of a deadlock exists because execution is
not guaranteed.

S T1 ESM
T5

T6
T7

F J

Figure 9. A simple (sound) workflow graph

The notation ‘each path to a join node’ is an inaccurate description, since the starting
points of these paths are not specified. The starting points should be the entry points for

14

deadlock analysis. As shown in the following, it is sufficient to derive only two entry points
for each join node to decide whether there is a cause of a deadlock for a join node.

5.1 Entry Points and Entry Graph

In acyclic, sound workflow graphs, join nodes are executed only once. However, if sound
graphs contain loops, join nodes may be executed more than once. In the latter case, the
state-space can be separated into two sets for a single join node: The set of states that can
be reached before its first execution and the set of states that can be reached after its first
execution.

Theorem 4 (Two independent entry points). Let WFG = (N, E, l) be a workflow
graph with its start edge entry (= eStart) and j be a join node with its outgoing edge out. If
there is a control-flow of entry or out with a deadlock in j, then WFG is not sound:

∃fentry ∈ Fentry : ∃S ∈ fentry : j has a deadlock in S (10)
∨∃fout ∈ Fout : ∃S ∈ fout : j has a deadlock in S (11)

=⇒
WFG is not sound (12)

In short, entry points for deadlock analysis are the start edge and the outgoing edges of
join nodes. If a deadlock analysis that starts at these entry points detects a deadlock, then
the workflow graph is unsound. However, the detected deadlock must never occur at runtime
due to previous faults. This inaccuracy is accepted for fast analysis.

To enable a straight-forward analysis without really focusing on whether the states before
or after a join node are being examined, we separate the workflow graph based on these
states. This is achieved by duplicating the join node. The old join node retains its incoming
edges and the “new” join node gets its outgoing edge. The workflow now has two start edges
and two end nodes. The start edges are also the entry points. Figure 10 visualizes this. An
analysis that starts with the original start edge considers all states before the join node’s
execution, while an analysis that starts with the new start edge examines the states after
execution.

S T1 E

F 1

S1

S2T5

T2

T4

T3

T6

a b c

d e f g

h

i
j

k

l m n

op

SjJ1M1

M2

Figure 10. Separation of the join node J1 from its outgoing edge

In the introduction of this section, we have argued that we recognize deadlocks
independently of other errors. Due to the separation of the join node, deadlocks in the
join caused by abundances are no longer possible. We further avoid a deadlock in this join
caused by other deadlocks by assuming the other join nodes as deadlock-free. They get the
label Safe, whose semantics avoid deadlocks in these join nodes.

Assume that two join nodes mutually prevent each other from detecting deadlocks in the
other, because it is assumed that the other is deadlock-free. Then, these join nodes must

15

have a path to each other, i. e., there is a cycle (compare Fig. 11). Since there is a path from
each node to the end node in a workflow graph, this cycle needs at least one exit node to the
outside (see also Fig. 11). If these loop exits are all fork nodes, then there is the possibility for
an abundance [51]. Otherwise, if one of these exit nodes is a split node, then this split node
has at least one outgoing edge that no longer has a path to the join nodes. As we will soon
show in this section, in this case, it is irrelevant whether one of the join nodes is assumed to
be deadlock-free, i. e., one of the join nodes does not cause the other to be deadlock-free. In
other words: If we find no abundance and no deadlock in the workflow graph, our detection
is safe. Otherwise, if we find an abundance, there could be also a deadlock in the workflow
graph, however, the graph is still unsound.

E

J 2
J 1

S

exit

exit

Figure 11. Abstract illustration of two join nodes that may prevent the deadlock detection due to
deadlock-free assumption

After the separation and label assignment of Safe, the resulting graph is called the entry
graph of the examined join node.

Definition 11 (Entry graph). Let WFG = (NW , EW , lW) be a workflow graph and j ∈
NJoin a join node with its outgoing edge out. An entry graph of j is a labelled graph EG(j) =
(N, E, l). It is based on WFG with some modifications:

1. The set of nodes N = NW ∪ {S}
2. The set of edges E =

(
EW \ {out}

)
∪

{(
S, tgt(out)

)}
3. The labels l = lW \

{
(j′, Join) : j′ ∈ NJoin

}
∪

{
(j′, Safe) : j′ ∈

(
NJoin \ {j}

)}
∪{

(S, Start), (j, End)
}

Figure 10 illustrates the entry graph of the join node J1 of the exemplary workflow graph.
The entry graphs are very similar to the original workflow graph. Although an entry graph
is not a workflow graph, its semantics are assumed. Under these circumstances, a deadlock
of a join node j occurs in the entry graph if and only if a control-flow of its start edges
delivers tokens on at least one but not at all incoming edges of the new end node j. This is
an immediate deadlock.

Definition 12 (Immediate deadlock). Let j be a join node of a workflow graph (N, E, l)
with its entry graph EG(j). Furthermore, let entry be a start edge of EG(j) and fentry a
control-flow.

j has an immediate deadlock in fentry (13)
⇐⇒

1 ≤
∣∣∣{in ∈ ▷j : in gets a token in fentry}

∣∣∣ < |▷j| (14)

16

In the entry graph of Figure 10, the control-flow
(
〈a〉, 〈b〉, 〈c〉, 〈d〉, 〈e〉, 〈f〉, 〈g〉

)
ends in an immediate deadlock of J1. The more complex control-flow(
〈a〉, 〈b〉, 〈c〉, 〈i〉, 〈j, l〉, 〈k, l〉, 〈f, l〉, 〈g, l〉, 〈g, m〉, 〈g, o〉, 〈g, p〉, 〈g, c〉, 〈g, i〉, 〈g, j, l〉, 〈g, k, l〉,
〈g, f, l〉, 〈g, g, l〉, 〈g, g, m〉, 〈g, g, n〉

)
does not end in an immediate deadlock, but with an

abundance at edge g. In the original workflow graph, a token would remain on g and causes
a deadlock. But this deadlock results from an abundance and is ignored by our analysis.

Immediate deadlocks can appear at execution time if there are no previous errors. If they
never occur at runtime, it is only because an earlier error prevents them. Either way, the
workflow graph is unsound.

5.2 Activation Edges and Causes of Deadlocks

If it is guaranteed that every time a join node receives a token, all other incoming edges also
receive tokens, an immediate deadlock is impossible. In the following, we introduce special
edges –– which we call activation edges of a join node –– whose execution guarantees tokens
on all incoming edges of a join node.

Definition 13 (Activation edges). Let EG(j) = (N, E, l) be an entry graph of a join node
j of a workflow graph.

An edge a ∈ E is an activation edge of a single incoming edge in of j if in each control-flow
of a there is a state where in has a token. We write a ↷ in:

(a, in) ∈↷ ⇐⇒ ∀fa ∈ Fa : ∃S ∈ fa : in ∈ S (15)

If a is an activation edge of each incoming edge of j, then a is also an activation edge of j,
a

all↷ j.

Reconsider the entry graph of Figure 10. The incoming edge g of the join node J1 has the
activation edges a, b, c, d, e, f , i, j, k, o, p, and g itself; ∀x ∈ {a, b, c, d, e, f, g, i, j, k, o, p} : x ↷
g. This is understandable when we look at the graph: Regardless of how the split node S1
decides, a token reaches with guarantee the edge g. In this example, no activation edge of
J1 exists since there is no edge, which guarantees a token on edge n (except n itself).

If on each path from an entry point to the join node lies an activation edge of that join
node, then an immediate deadlock is impossible. Otherwise, if the join has an immediate
deadlock, there must be a path to that join without an activation edge. This states the
following theorem:

Theorem 5 (Deadlock theorem). Let j be a join node with its entry graph EG(j), and
entry be a start edge of the entry graph.

∀fentry ∈ Fentry : j does not have an immediate deadlock in fentry (16)
⇐⇒

∀in ∈ ▷j : all paths from entry to in contain an activation edge of j (17)

Figure 12 shows the entry graph of a join node J1 of a sound workflow graph. For this
graph, (S, T1) is a start edge (an entry point). On all paths from (S, T1) to the incoming edges
(T7, J1) and (T5, J1) of J1 an activation edge of both edges lies: (S1, F1). The same applies
to all paths from (Sj, S2) to these incoming edges. Theorem 5 states that an immediate
deadlock is impossible. This is easy to understand regarding the graph in Figure 12 — each
control-flow of (S, T1) and (Sj, S2), respectively, either reaches J1 completely or not at all.
This is in contrast to the entry graph of Figure 10, where the join node J1 has no activation
edge. Therefore, an immediate deadlock is possible in Figure 10.

17

S

T1 E

M2

F 1

S1

S2

M1

T5

T2

T4

T3

T6

M3

T7 7

J1 Sj

Figure 12. Entry graph of a join node J1 of a sound workflow graph

Basically, we can use Theorem 5 to determine potential, immediate deadlocks for each join
node. The causes of these potential, immediate deadlocks are structural failures in workflow
graphs, i. e., the existence of computations that reach join nodes but do not guarantee their
execution. As we argued earlier, if we have neither immediate deadlocks nor abundances, the
workflow graph contains no deadlock and is, therefore, sound. If it contains an immediate
deadlock, the workflow is unsound.

5.3 Algorithmic Derivation

So far, the theory of finding causes of deadlocks shows that the absence of activation edges
causes immediate deadlocks. In the following, Algorithms 1 and 2 explain how to find
activation edges and immediate deadlocks in any workflow graph.

The determination of activation edges requires the consideration of control-flows by
definition. However, the consideration of control-flows is a partial consideration of the
state-space and therefore inefficient. In order to obtain an efficient determination, a
relationship between edges and their direct successors helps.

Remark 2. Let j be a join node with its entry graph EG(j) and one of its incoming edges
in. In addition, let a be any edge with its direct successors Succ = tgt(a)◁.
a is an activation edge of in iff

1. a = in, or
2. tgt(a) is a task, fork, merge, or safe node (former a join node) and ∃b ∈ Succ : b ↷ in,

Figure 13 a) to d), or
3. tgt(a) is a split node and ∀b ∈ Succ : b ↷ in, Figure 13 e).

Therefore, each activation edge (6= in) has at least one activation edge as a direct successor.

Task Fork

b

a

b

a

b

a

Safe

b

a

b

a

a) b) c) d) e)

Merge Split

b′ b′

Figure 13. The direct predecessor of an activation edge is also an activation edge, except the node
in between is a split node

Activation edges and their adjacent nodes build a connected graph [52]. For this reason,
each activation edge of an incoming edge in of a join node j is in’s predecessor — the set of
all predecessors is a superset of all activation edges of in. The predecessor superset results

18

directly from an inverse depth-first search at the edges of the entry graph starting at in
(an inverse depth-first search visits the edges in opposite direction). The approach of the
algorithm is to filter the set of activation edges, Activation(in), iteratively from this superset.
In each iteration, Activation(in) gets an update by eliminating the edges that are not in’s
activation edges. If the filtering finds a fixed point, the algorithm terminates. Activation(in)
then contains the set of activation edges of in.

Each edge (6= in) in Activation(in) has a direct successor in Activation(in). With respect
to Remark 2, the algorithm only has to eliminate incoming edges of task, fork, merge, and safe
nodes if it has already eliminated all their direct successors. In contrast, the incoming edges
of split nodes are not activation edges if at least one direct successor is not in Activation(in).
As a consequence, there are two steps for each iteration: 1) eliminating incoming edges of
split nodes, and 2) eliminating incoming edges of task, fork, merge, and safe nodes. Since
the latter have no direct successors in Activation(in), they are no longer reachable from in
and can be easily removed by a new inverse depth-first search.

Algorithm 1 Determination of the activation edges
Require: The entry graph EG = EG(join) of a join node join.
Ensure: The sets of activation edges Activation(in) for each incoming edge in, and ActivationJoin for join itself.

ActivationJoin← E(EG)
for all in ∈ ▷join do

// Initial position: All predecessors of in are Activation(in). Determination by an inverse depth-first search from in.
Activation(in)← InverseDepthF irstSearch

(
E(EG), in

)
repeat

OldActivation← Activation(in)
// Eliminate incoming edge of split node from Activation(in) if not all its outgoing edges are in Activation(in).
for all split ∈ NSplit do

if split◁ 6⊆ Activation(in) then
Activation(in)← Activation(in) \ ▷split

end if
end for
// Inverse depth-first search starting from in on the edges of Activation(in). Visited edges are the new Activation(in).
Activation(in)← InverseDepthF irstSearch

(
Activation(in), in

)
// Compute as long as Activation(in) changes.

until Activation(in) = OldActivation
ActivationJoin← ActivationJoin ∩Activation(in)

end for

Algorithm 1 shows the determination of the activation relation. Considering the entry
graph of Figure 10 as an example, the initial set Activation(g) from the incoming edge g
of the join node J1 is {a, b, c, d, e, f, g, i, j, k, l, m, o, p}. Now, the algorithm determines those
split nodes that have outgoing edges outside of Activation(g). The split node S2 satisfies this
property; the algorithm eliminates its incoming edge m. Then, an inverse depth-first search
updates Activation(g) to {a, b, c, d, e, f, g, i, j, k, o, p}. Since no edge can be longer eliminated,
the algorithm terminates. Each edge of Activation(g) guarantees a token on g if it carries a
token.

Two loops characterize the asymptotic runtime behavior of Algorithm 1 for a single
incoming edge in of a join node: the outer repeat-until-loop and the inner for-all-loop. The
repeat-until-loop is executed at most as it eliminates edges: O(E). The time-consuming
steps of this loop are the inverse depth-first search, O(E), and the inner for-all-loop. The
for-all-loop examines each split node, O(NSplit) or simplified O(E). Therefore, each iteration
of the repeat-until-loop requires O(E). In total, the repeat-until-loop has a quadratic
runtime, O(E2). To determine the activation edges of all incoming edges of all join nodes,
the total asymptotic runtime is cubic, O(E3).

Now, all activation edges are available. Algorithm 2 for finding immediate deadlocks uses
them. It is based on the deadlock Theorem 5, which takes into account all paths from each
start edge of the entry graph of j to j itself. If there is a path without an activation edge
of j, then an immediate deadlock is possible at j. An inverse depth-first search from the

19

incoming edges of j considers all of those paths. If the search reaches an activation edge of
j, the search does not consider subsequent edges. However, if the search reaches one of the
start edges of the entry graph, then there is at least one path from that start edge to at least
one incoming edge of j without an activation edge.

Three loops characterize the asymptotic runtime behavior of Algorithm 2: 1) the
construction of the entry graphs, 2) the determination of the activation edges, and 3)
the application of the inverse depth-first search including the determination of immediate
deadlocks. The construction of a single entry graph (1), is linear, O(E). It only has to replace
the labels of all join nodes and to separate the considered join node. The construction
of all entry graphs is quadratic. The computation of all activation edges (2), has a cubic
complexity as already mentioned. For each incoming edge of all join nodes, the algorithm
applies an inverse depth-first search and a determination of immediate deadlocks (3). The
inverse depth-first search has a linear complexity, O(E). The immediate deadlock check is
constant. Step 3 therefore has a quadratic runtime complexity considering the number of
edges. The complete algorithm for determining all immediate deadlocks is cubic, O(E3).

Algorithm 2 Determination of immediate deadlocks
Require: A workflow graph (N, E, l)
Ensure: A set Dead ⊆ NJoin of all join nodes with potential immediate deadlocks.

Compute the entry graphs for each join node join with start edges Start(join).
Compute the activation edges for each join node.
for all join ∈ NJoin do

for all in ∈ ▷join do
// Define the edges where the search stops. That are the activation edges of join.
StopSearch← {a ∈ E : a

all
↷ join}

// An empty set defines visited edges during the search.
Visited← ∅
// Apply an inverse depth-first search starting from in.
InverseStoppableDepthFirstSearch(in, StopSearch, Visited)
// Determine the immediate deadlocks.
if

(
Start(join) ⊆ Visited

)
then

Dead← Dead ∪ {join}
end if

end for
end for
procedure InverseStoppableDepthFirstSearch(current, StopSearch, Visited)

Visited← Visited ∪ {current}
for all pred ∈

(
▷src(current) \ (StopSearch ∪Visited)

)
do

InverseStoppableDepthFirstSearch(pred, StopSearch, Visited)
end for

end procedure

6 Causes of Abundances

In workflow graphs, semantics bind deadlocks to join nodes, while abundances can occur at
any edge with any number of tokens. A small change in the order of execution leads to an
earlier or later abundance or hides it completely. Finding all these abundances (e. g., with a
state-space exploration) is impossible or at least very time-intensive in practice.

As with deadlocks, the aim of this work is to find a fast approach. This is possible by
not determining all reachable abundances. Instead, the causes of abundances are the focus
since, without causes of abundances, there are no abundances at runtime. Knowing the cause
further helps to avoid it during construction.

Basically, since there is parallelism with at least two tokens, the origin of each abundance
lies in the execution of a single fork node. For this reason, fork nodes are suitable entry
points for an abundance analysis. An abundance occurs when no join node synchronizes at
least two control-flows of a fork node. Our approach is very simple: Two control-flows, which
start in a single fork node, can reach exactly those edges at first simultaneously, to which the

20

fork has two disjoint paths. These first edges are called intersections. If the sources of these
intersections are join nodes, there are no problem. Otherwise, abundances are possible.

In the following, it is assumed that fork nodes have exactly two outgoing edges. Although
this is a limitation, any workflow graph can be transformed without changing the semantics
by simply adding additional fork nodes. For each fork node fork with more than two outgoing
edges, the transformation requires a maximum of |fork◁|−1 additional fork nodes. Since the
transformation doubles the number of edges at maximum, the graph grows only linearly.

6.1 Intersections of Control-Flows
In an abundance, at least two tokens lie on at least one edge. Since an abundance has at
least two tokens, a fork node must be executed before to enable this parallelism. After the
execution of a fork node fork, each of its outgoing edges carries at least one token. These
tokens move almost independently from each other from edge to edge. They pass places where
they can meet for the first time. In other words, in such places, two tokens of fork can reach
the same edge and cause an abundance for the first time. These places are intersections.
Definition 14 (Intersection). Let fork be a fork node of a workflow graph (N, E, l). An
edge ι ∈ E is an intersection for the two outgoing edges a, b ∈ fork◁ of fork if there are two
paths Pa from a and Pb from b to ι and Pa ∩ Pb = {ι}. The paths Pa and Pb are routes from
a and b to ι. Also, ι is an intersection of fork.

In Figure 14, the edge f is an intersection of the fork node F1. It can be reached via
the routes (j, k, f) and (l, m, o, p, c, d, e, f) from the two outgoing edges of F1. Further
intersections of F1 are the edges h and j.

S T1 E

M2

F 1

S1 J 1

S2

M1

T5

T2

T4

T3

T6

a b c

d e
f

g

h

i

j

k

l m n

op

Figure 14. An abundance on the edge f

If all intersections of all fork nodes have join nodes as source, then all tokens meet in join
nodes at first — and are synchronized. An abundance is impossible.
Remark 3 (Exclusion of abundances). Let (N, E, l) be a workflow graph.

∀fork ∈ NFork : each intersection of fork has a join node as source (18)
=⇒

∀e ∈ E : ∀S ∈ S(E), 〈e〉 →∗ S : S is not an abundance (19)

After using the contraposition (a → b ⇔ ¬b → ¬a) of Remark 3, the necessity of
abundances results:
Remark 4 (Condition of abundances). Let (N, E, l) be a workflow graph. From the
contraposition of Proposition 3 follows:

∃e ∈ E : ∃S ∈ S(E), 〈e〉 →∗ S : S is an abundance (20)
=⇒

∃fork ∈ NFork : there is an intersection of fork whose source is not a join node (21)

21

For instance, the source of the edge f of Figure 14 is no join node, it is the merge node
M2. The abundance on f results from the missing synchronization in M2.

6.2 Superfluous Intersections
Remark 4 states that if an abundance has occurred, then at least one intersection of a fork
node has not a join node as source. This condition is necessary for an abundance. We must,
however, check that it is sufficient. In the following, fork should be a fork node with one of
its intersections ι.

The basic idea of checking for sufficiency is to assume a sound workflow graph. In a sound
workflow graph, a non-join intersection ι is unnecessary (“superfluous”), because it can never
be reached by two tokens at the same time, i. e., it never synchronizes tokens. Otherwise, the
workflow would not be sound. We can formulate the following sufficient condition for sound
workflow graphs informally without knowing superfluous intersections in detail yet:

Remark 5. Let WFG = (N, E, l) be a workflow graph.

WFG is sound (22)
=⇒

∀fork ∈ NFork : each intersection of fork has a join node as source or is “superfluous” (23)

According to Theorem 1, the tokens of fork can arrive at ι via any routes. It is of interest
what exactly prevents the tokens that they arrive at ι at the same time. The following
explains that unnecessary (“superfluous”) intersections are activation edges of some incoming
edges of join nodes on the routes:

Theorem 6. Let WFG = (N, E, l) be a workflow graph with a fork ∈ NFork , fork◁ = {a, b}.
An intersection of fork is ι.

src(ι) /∈ NJoin ∧ WFG is sound (24)
=⇒

On all routes (Pa, Pb) from a and b to ι lies a join node on Pa or Pb

and ι is an activation edge of a real non-empty subset of the join’s incoming edges (25)

The preceding theorem describes the necessary condition for unnecessary (“superfluous”)
intersections in sound workflow graphs. Instead of directly showing that the condition is
sufficient, we build the contraposition for checking the sufficient condition. This is done in
the following theorem:

Theorem 7. Let WFG = (N, E, l) be a workflow graph with a fork ∈ NFork , fork◁ = {a, b}.
fork has an intersection ι.

There is a route (Pa, Pb) from a and b to ι

where ι is not an activation edge
for a real non-empty subset of the incoming edges of any join node on Pa and Pb (26)

=⇒
src(ι) ∈ NJoin ∨ WFG is unsound (27)

It is now possible to define superfluous intersections formally:

Definition 15 (Superfluous intersections). Let fork be a fork node in a sound workflow
graph. An intersection ι of fork with src(ι) /∈ NJoin is superfluous if on all routes A and B to
ι is a join node on the path B, where ι is an activation edge for a non-empty proper subset
of this join’s incoming edges.

22

From the contraposition of Remark 5 follows our abundance criterion:

Remark 6. Let WFG = (N, E, l) be a workflow graph.

∃fork ∈ NFork : There is an intersection of fork
that has not a join node as source and is not superfluous (28)

=⇒
WFG is unsound (29)

Remark 6 can be used to identify abundances in workflow graphs. Although the remark
only claims that the workflow is unsound, the proofs of Theorems 6 and 7 in the appendix
explain that there is an abundance except a previous deadlock avoids it. In other words,
Remark 6 is able to find abundances behind other errors. As the evaluation later shows, the
detected causes of abundances are very accurate. With Theorem 5 to detect immediate
deadlocks and Remark 6 to detect causes of abundances, we are now complete
in terms of soundness.

Remark 7 (Completeness). A workflow graph is sound iff it neither has an immediate
deadlock according to Theorem 5 nor an abundance according to Remark 6.

Justification: Suppose we have found an immediate deadlock by Theorem 5. This
deadlock does not occur during execution only if another error prevents it (as explained
before). Either way, the workflow graph is unsound if we find any immediate deadlock. If we
did not find any immediate deadlock, then the workflow graph can still have deadlocks, but
only if the workflow graph contains an abundance.

Suppose we have found a cause of an abundance by Remark 6. This abundance does not
occur during execution only if some other error prevents it. Nevertheless, the workflow graph
is still unsound. If we did not find any cause of an abundance, then no abundance is possible
at all. In summary, the workflow graph is sound if and only if we find neither immediate
deadlock nor abundance.

6.3 Algorithmic Derivation

The determination of intersections of a fork node is similar to ϕ-placement in the minimal
Static Single Assignment Form (SSA form) — a traditional compiler construction problem
[53], [54]. In the SSA form each variable gets statically only once a value. To achieve this,
the transformation inserts a new variable (called definition) for each variable assignment.
If two definitions of the same variable are valid in one place, a ϕ-function combines both
values. The ϕ-function selects the correct definition dependent on the actual control-flow at
runtime. It has the form of dn = ϕ(d1, . . . , dm), m ≥ 2, where d1, . . . , dm are the different
definitions whose resulting definition is dn.

The simplest transformation inserts ϕ-functions at all merging points resulting in
unnecessary ϕ-functions. In the minimal SSA form, ϕ-functions are only located at those
positions where they are statically necessary (by static placement of ϕ-functions fairness
is assumed, i. e., each path can be reached by control-flows). Cytron et al. describe those
positions as nodes where two paths starting in two different definitions of the same variable
v first meet [55]. If we apply this description to edges, it is equal to our definition of
intersections of fork nodes. Cytron et al. derived an algorithm for constructing a minimal
SSA form. For any two paths starting at any nodes, the algorithm detects the first meeting
nodes. This algorithm also applies to edges.

If we want to find intersections of a fork node fork, a fork-specific variable v in the form
v ← ϕ(x) is placed at each outgoing edge of fork, where x is an arbitrary value (see Figure 15,

23

left picture). The algorithm of Cytron et al. computes the ϕ-functions necessary at minimum
for this variable v. Either the algorithm of Cytron et al. or a faster version is applicable
(e. g., by Lengauer and Tarjan [56] or Cooper et al. [57]). Most of those algorithms assume a
variable assignment on the start edge of the control-flow graph. But this is unnecessary for
our purpose. After the algorithm’s application, all ϕ-functions are available in the workflow
graph with respect to fork (v) (see the positions of the ϕ-functions in Figure 15, right picture).
Each ϕ-function with at least two parameters is a meeting point of two disjoint paths and,
therefore, an intersection of fork. We can find all intersections of fork.

In Figure 15 (right picture), the upper outgoing edge of the fork node is an intersection.
Two paths meet firstly in this edge — the path consisting of the edge itself and the path
from the lower outgoing edge to this edge. During runtime the token may pause on that
intersection and the token at the other edge reaches it and causes an abundance.

S T1 E

M2

F 1

S1 J 1

S2

M1

T5

T2

T4

T3

T6

v φ(4)

v φ(3)

S T1 S1

S2

M1

T2

T6

v1 φ(4,v2)

v2 φ(3)

v3
φ(v1,v2)

v4
φ(v3,v2)

T4

M2 T3

T5

J 1 E

F 1

Figure 15. Two assignments of the fork-specific variable v (left workflow graph) and ϕ-placements
for the fork-specific variable v (right workflow graph)

Algorithm 3 shows an implementation to find all intersections of the fork nodes. Its
asymptotic runtime complexity depends on the construction of the minimal SSA form. This
is cubic, O(X3), according to Cytron et al. [55] concerning the maximum X of the number of
nodes, edges, and assignments. Since the number of nodes and assignments is smaller than
the number of edges, X = E follows. So the worst-case complexity is O(E3).

Algorithm 3 Determination of all intersections of all fork nodes
Require: A workflow graph (N, E, l)
Ensure: The set inter(fork) of all intersections of each fork node fork

// Initialization: Insertion of all fork-specific variables.
for all fork ∈ NFork do

for all out ∈ fork◁ do
Insert ϕ-function out← ϕ(x), x is an arbitrary value

end for
end for
Compute the minimal SSA form (e. g. following Cytron et al.)
// Detection of the intersections.
for all fork ∈ NFork do

for all ϕ-functions ϕ of fork do
Let t be the edge at which ϕ is placed
if Number of parameters of ϕ ≥ 2 then

inter(fork)← inter(fork) ∪ {t}
end if

end for
end for

We have the intersections of the fork nodes. We have to eliminate superfluous intersections
to be exact. To check the superfluousness of an intersection ι of a fork node fork, we need to
check whether two routes from fork to ι do not contain join nodes, for which ι is an activation
edge of at least one of their incoming edges.

The proposed approach uses the theory of flow networks [15] to solve the problem. A flow
network is a digraph G = (N, E) with exactly one flow source, source ∈ N(G), and exactly

24

one flow sink, sink ∈ N(G). The flow source has no incoming edge. Each edge e of the flow
network has a capacity cap(e) on possible flows. Figure 16 a) shows a simple flow network.

src sink

a b

c d

3

2

2

1
1

4 2 5

src sink

a b

c d

(2/3)
(2/2)

(2/2)
(0/1)

(0/1)

(2/4) (2/2) (2/5)

a) b)

flow capacity

Figure 16. A simple flow network, a), and its maximum flow, b)

The most prominent problem with flow networks is the calculation of the maximum flow
(max-flow problem) [15], [58]. In this problem, as many flows as possible should start in the
flow source without exceeding the capacities of the edges (cf. Figure 16 b)). The upper limit
is the sum of the capacities of the incoming edges of the flow sink, ∑

e∈▷sink
cap(e).

We can apply the max-flow problem to check the superfluousness of an intersection ι of a
fork node fork. In other words, it helps to decide whether there are at least two disjoint paths
(except ι) from fork to ι without join nodes, for whose incoming edges ι is an activation edge.
To achieve this, we reformulate our problem into the max-flow problem by transforming the
workflow graph into a flow network concerning fork and ι.

A flow in the flow network represents the “travel” of a token from an outgoing edge of fork
to ι. At each edge, there is a space for a single flow/token. If an edge has two flows, both
paths are not disjoint. Therefore, the capacity of each edge e is 1 at this moment, cap(e) = 1.
The flow source is the node fork since it “produces” the tokens. The flow sink is the source
of ι, src(ι).

To prevent a flow/token from travel over a join node, for which ι is an activation edge of
at least one of its incoming edges, the capacity of all outgoing edges of all these join nodes
is set to 0. As a result, no flow can use these edges. We can simply determine the join nodes,
whose outgoing edges are set to 0, with the information about the activation edges from
Section 5. A recalculation is not necessary.

At last, we must eliminate the incoming edge in from fork to match the definition of flow
networks. But this would also destroy potential paths from an outgoing edge of fork to ι. To
avoid this, we do not eliminate in, but detach in from fork and insert a new node fork’. in
is the new incoming edge of fork’ (see Figure 17, step 1). In the next step, we detach each
outgoing edge out of fork and insert a new merge node Mout for each edge. Out is the new
outgoing edge of Mout (see Figure 17, step 2). Then for each edge out we add a new edge
from fork to Mout and from fork’ to Mout. These new edges all have capacity of 1. Figure 17,
step 3, illustrates the resulting flow network cut-out. It is easy to verify that each original
outgoing edge of fork can host a maximum one flow.

fo
rk

M1

in

out1

out2

fo
rk

in out1

out2

fo
rk

'

fo
rk

in

out1

out2

fo
rk

'

M2

M1

fo
rk

in

out1

out2

fo
rk

'

M2

Initial situation Step 1 Step 2 Step 3

Figure 17. Steps for duplicating a fork node to preserve paths via the incoming edge in

25

The transformation of the workflow graph into a flow network regarding fork and ι is
completed. Figure 18 illustrates our example workflow graph transformed into a flow network
concerning the fork node F1 and the intersection (M2, T3).

S T1 E

F 1

J 1M1

T2

T4

T3

F'
1

Mj

Ml

(1,1)

(1,1) (1,1)

(1,1)

(0,1) (0,1)

(0,0)

(0,1)

(1,1)

(1,1)

(1,1)

(1,1)

(1,1)

(0,1)
(1,1)

(0,1)(0,1)

(1,1)(0,1)(0,1)

(0,1)

flow capacity

M2

S2

T6

T5

S1

Figure 18. The flow network of our example workflow graph concerning the fork node F1 and
intersection (M2, T3)

On the created flow network, we compute the maximum flow with respect to fork (see
Figure 18). If the incoming flow of the sink (i. e., src(ι), M2 in the example) is greater than
or equal to 2, then there are two disjoint paths Pa and Pb from fork to ι. They avoid paths
with join nodes for which ι is an activation edge of a subset of their incoming edges, because
the capacities on these edges are 0. In this case, ι is a non-superfluous intersection of fork.
In the example, (M2, T3) is such an intersection of F1, because two flows reach it. But its
source is a merge node and, therefore, there is a possibility of abundance. On the contrary,
if the incoming flow is less than or equal to 1, ι is superfluous. It can be eliminated as an
intersection of fork.

Figure 19 shows a sound workflow graph and Figure 20 its flow network regarding the
fork node fork. The intersection (M2, join) = ι is superfluous since (M2, join) is an activation
edge of the incoming edge (= ι) of the join. Figure 20 illustrates the maximum incoming
flow of 1 of (M2, join). Another flow does not reach it because the outgoing edge of the join
node has a capacity of 0. Our algorithm identifies it correctly.

ι

S

E

fo
rk

jo
in S1

M1

M2

F

Figure 19. A sound workflow graph with the
intersection ι of the fork node fork with two
routes in grey and dashed lines

S

E

jo
in S1

M1

M2

F

fo
rk

fo
rk

Ma

Mb(0,1)
(0,1) (1,1)

(0,1)

(0,1)

(0,1)

(0,1)

(0,0)

(0,1)

(0,1)

(0,1)(0,1)

(0,1)

(1,1)

Figure 20. The flow network with respect
to the fork node fork and the superfluous
intersection (M2, join)

The transformations of the workflow graph in a flow network and the calculation of the
maximum flow solve our problem of eliminating superfluous intersections. The algorithm of
Ford and Fulkerson [15], [59] can be used to calculate the maximum flow, for instance. It
calculates the maximum flow f in an asymptotic runtime of O(fE). Since f is at maximum
as high as the intersection’s ϕ-function has parameters, the maximum flow is a constant in
our case. Therefore, it is possible to calculate the maximum flow in linear time behavior
O(E).

26

The transformation of the workflow graph into a flow network regarding a single fork node
and a single intersection is possible in linear time. The information about activation edges
can either be taken from the deadlock analysis (see Section 5) or be recomputed using the
algorithm in that section. As mentioned there, the asymptotic runtime complexity is cubic,
O(E3). Since the number of fork nodes and the number of intersections of each fork node
is linear to E in the worst case, the superfluous intersection elimination is cubic O(E3).
Finally, Algorithm 4 shows the complete algorithm to determine causes of abundances. This
algorithm has a cubic total runtime complexity.

Algorithm 4 Detection of abundances’ causes
Require: A workflow graph WFG = (N, E, l)
Ensure: The set Causes ⊆ NFork × E of all causes of abundances

// Initialization
For each fork node fork detect its intersections inter(fork)
For each intersection determine the join nodes, for which it is an activation edge for a subset of incoming edges
// Check all non-join intersections
for all fork ∈ NFork do

for all ι ∈ inter(fork) do
if src(ι) /∈ NJoin then

// Check whether ι is superfluous
Transform WFG into a flow network regarding fork and ι
Compute the maximum flow of the flow network maxFlow
if maxFlow >= 2 then

Causes← Causes ∪ {(fork, ι)}
end if

end if
end for

end for

7 Implementation
We have developed a tool Mojo to evaluate the previously introduced algorithms and
approaches [60]. The tool is part of our concept of a system for developing and executing
workflows [61], shown in Figure 21. Currently, Mojo covers parts of the producer side. On
the producer side (the compiler), a parser reads the workflow. During parsing, the structure
of the workflow is checked. Then, a transformer translates the workflow into an Intermediate
Representation (IR). As IR, Mojo uses workflow graphs. In general, an IR abstracts from
language-dependent properties of the entire modeling language.

Workflow
repository

Parser

Transformer

Semantic
analyzer

Error handler

Coder/
annotator

Syntactic correct workflow

Intermediate Representation (IR)

Verifier

Decoder

IR

Workflow

P
ro

d
u

ce
r

si
de

 /
 c

o
m

p
ile

r C
on

su
m

er sid
e / virtu

al m
achin

e

Executor

Dynamic semantic
analyzer

Runtime error
handler

Interpreter

Developer

Developer/
user

Services/tools

Figure 21. Map of a system for developing and executing workflows (adapted from [61])

After production of the IR, the workflow is checked semantically in a semantic analyzer.
An example for such a semantic check is the application of the algorithms presented in this

27

article. If semantic faults occur, an error handler informs the developer about the faults, so
that the developer receives immediate feedback. Otherwise, if the workflow is semantically
correct, it is encoded and stored into a file or workflow repository.

Besides the producer side, there is a consumer side. The consumer side is a virtual machine.
It reads the encoded IR from the files or workflow repositories, a decoder decodes the IR,
and a verifier verifies it against the same semantic properties as on the producer side. The
verification can be accelerated by adding annotations to the IR that contain previous analysis
results. The goal of the verifier is to detect IR manipulations and avoid the execution of
malformed workflows. After verification, the virtual machine executes the workflow in an
interpreter and performs dynamic and semantic runtime analyses to avoid errors at runtime
as early as possible. The virtual machine illustrates the errors to the user or developer.

Further information about the system and its concepts can be found in Prinz et al. [61].
An overview of the compiler and the virtual machine is given by Prinz et al. [62], [63].

Mojo has an expandable software architecture that uses the concept of extension points.
The extension points allow the adaptation of new modeling languages and new analyses. For
this reason, other researchers can extend Mojo on their purpose.

Analysis plans describe the order in which Mojo applies analyses. They define the necessary
phases to obtain correct analysis results. Such phases can be bigger analysis plans again and
can include other phases. Many compilers use such an approach.

Figure 22 illustrates a conceptual picture of the Mojo architecture. In the current state
of development, inputs are possible either via files in Petri Net Markup Language (PNML,
only free-choice nets) [64] and BPMN or by direct programming of workflow graphs. There
are predefined plug-ins for PNML and BPMN. These plug-ins consist of a parser that
disassembles the files in their components, and a transformer that translates the entire
workflows to semantically equivalent workflow graphs by abstracting language-dependent
properties of the modeling language. For instance, the transformers combine different start
nodes into a single one or they combine multiple end nodes by the algorithm of Kiepuszewksi
[65]. Some of the features of BPMN are yet simplified and not fully supported. The current
state of implementation is a prototype.

PNML
parser

Workflows
OutputBPMN

parser

PNML
transformer

BPMN
transformer

Analyse-
plan 1
Analyse-

plan 1
Analysis
plan 1

Workflow
graph
(WFG)

A
n

al
ys

e
 x

A
n

al
ys

e
 ..

.
A

n
al

ys
e

 2
A

n
al

ys
is

 1

Fault
annotater

WFG

Program input

Figure 22. Conceptual architecture of Mojo

The (transformed) workflow graphs are explored by the analysis plans. Typical
components of such analysis plans are the finding of causes of deadlocks and abundances.
Which analysis plan is to be used is defined in the tool. Each analysis plan has a unique
number for easy identification. For instance, the analysis plan with the number 0 evaluates
the algorithms of this work and defines a general plan for the analysis of workflow graphs,
which consists of two phases: 1) preparation and 2) analysis of causes of deadlocks and
abundances.

28

The first phase (preparation) modifies the workflow graph to simplify further steps. For
instance, it inserts additional task nodes to make multiple edges between nodes unique.
Based on the information collected, the analysis of causes (the second phase) performs
the algorithms introduced in this article. Any fault that has been detected is registered
and annotated to the workflow graph. The faults are described with a textual label and a
graphical highlighting within the development tool. To see the fault highlighting, Mojo must
be integrated into a graphical workflow designer.

We have integrated Mojo into the Activiti BPMN 2.0 Designer (http://activiti.org/, last
visited April 2021). This is easy since Mojo is a standalone Java library and an Eclipse
plug-in. Figure 23 shows the integration. In each modification step of a workflow, Mojo
performs analyses without visible delay. In this way, Mojo transforms the internal workflow
model of Activiti into at least one workflow graph. An appropriate analysis plan is then
applied. Our Activiti extensions visualize the collected analysis information for the developer.
The developer can view the faults in two different modes. The overview mode illustrates all
faults with reduced textual and graphic information. It provides an overview of the faults
within the workflow. The detail mode visualizes exactly one fault (selected by the developer)
with all available diagnostic information. This mode can be used to correct the workflow.

Figure 23. Integration of Mojo in the Activiti BPMN 2.0 Designer

8 Evaluation

In this section, the introduced algorithms are evaluated with regard to their quality and
quantity of the errors found. In addition, the runtime behavior is evaluated in a real context.
We used the previously introduced tool Mojo to check the soundness property for a process
library with about 1,000 real workflows.

8.1 Test Settings

The test environment for Mojo was a commercially available personal computer with a
64-Bit Debian GNU/Linux 9.0 (stretch) operating system. The version of the Linux kernels

29

http://activiti.org/

was 4.8.0-2-amd64 x86_64. The PC used a 4-Core Intel©Core™ i5-4570 processor with 8
GB main memory. Mojo ran on an OpenJDK in version 1.8.0_111. The committed memory
was 2.048 MB.

For quantitative evaluations, we used a library of real process models of the IBM
WebSphere Business Modeler. This library contains 1, 368 workflows separated into five
benchmarks A (282 workflows), B1 (288 workflows), B2 (363 workflows), B3 (421 workflows),
and C (32 workflows). The library contains workflows in different sizes, structures, and
behaviors and was made freely available on the internet by IBM Zurich in the original XML
file format of the WebSphere modeler 4. The usage without high effort is possible by using
the PNML file format [64]. PNML describes Petri nets in a simple syntax. The reader was
able to find the workflows of the library as PNML files in the context of the work of Fahland
et al. [4] 5. These PNML files were also used in this evaluation.

We considered the workflows of the library with three tools: 1) Mojo, 2) LoLA [47], and 3)
jBPT [66]. The tool LoLA uses state-space exploration and requires Petri nets in a special,
proprietary file format. The necessary files can be found on the internet (see reference to
URLs above). The project Business Process Technologies 4 Java provides its tool jBPT. It
is open source and also available on the internet 6. It contains an implementation of the
SESE decomposition of Vanhatalo et al. [38], [18]. Based on the simple rules of Vanhatalo
et al., we created a correctness validation for well-structured fragments — so-called bonds
being produced by the construction of the refined process structure tree [18]. Such a bond is
a typical structure of an opening and closing node as it is known from programming (e. g.,
if-then-else constructs). Our implementation of the correctness validation checks the fitting
of the opening to the closing node. If the opening and closing nodes do not fit (e. g., a split
node is closed by a join node), there is a fault. The heuristic rules of Vanhatalo et al. were
not considered. In the following, SESE refers to the analysis with the tool jBPT since jBPT’s
algorithms are based on the SESE decomposition. We used the SESE approach since it was
recognized as the most efficient technique available [4] in 2011. Although the approach is
attested as incomplete, a pre-computation of the structured workflow parts is promising.

8.2 Detailed Comparison of the Tools
First, the evaluation compares in detail the results of the application of all three
tools/techniques with the example BPMN workflow in Figure 24.

S

T1 M1/T6
S1

T2

F1
T4

T5

T3 J1M2

S2

E

Figure 24. Example workflow for the comparison of the analysis tools

Mojo. Applying the tool Mojo to the example workflow produces a similar overview of
problems as shown in Figure 25. A developer will find clues to each cause of an error: 1) a
4 https://web.archive.org/web/20130513144952/http://www.zurich.ibm.com/csc/bit/downloads.

html, last visited April 2021
5 https://web.archive.org/web/20131208132841/http://service-technology.org/publications/

fahlandfjklvw_2009_bpm, last visited April 2021
6 https://code.google.com/archive/p/jbpt/, last visited April 2021

30

https://web.archive.org/web/20130513144952/http://www.zurich.ibm.com/csc/bit/downloads.html
https://web.archive.org/web/20130513144952/http://www.zurich.ibm.com/csc/bit/downloads.html
https://web.archive.org/web/20131208132841/http://service-technology.org/publications/fahlandfjklvw_2009_bpm
https://web.archive.org/web/20131208132841/http://service-technology.org/publications/fahlandfjklvw_2009_bpm
https://code.google.com/archive/p/jbpt/

potential deadlock in a join node, 2) a possible abundance in a misaligned synchronization,
and 3) a potential production of any number of control-flows. The latter appears when the
outgoing edge of a fork node is an intersection. In this case, the control-flows of the fork
are not synchronized before the fork’s next execution. This can lead to the production of an
arbitrary number of tokens. In the following, we call it an abundance in a loop.

Each cause of error can be considered in detail. To obtain detailed diagnostic information,
Mojo applies further simple techniques. In most cases, these techniques use a simple
depth-first search. Their runtime behavior is at least as efficient as the approaches described
in this article.

Figure 26 shows a detailed view of the cause of a potential deadlock in the example
workflow. The additional information is obtained by an inverse depth-first search. This
information helps the developer to see on which path the join node can block and which
node is causing this blocking.

Possible

deadlockPossible

abundance

Any number

of control-

flows possible

Figure 25. An overview of faults with Mojo

2. a token does not reach

each incoming edge of this

join node in guarantee. A

deadlock is possible.

3. This split node

destroys a guaran-

teed execution.

1. On this

path...

Figure 26. Detailed fault feedback of the cause
of the potential deadlock in the join node J1

Mojo generates similarly detailed information for the potential abundance in the merge
node, Figure 27. A developer of the workflow sees the paths where two control-flows can
collide for the first time. Additional information is derived directly from the maximum flow.
The same is true for the fork node F1, which produces any number of control-flows, i. e., an
abundance in a loop, Figure 28. In Figure 28, one path marks the route without intersection,
so that the corresponding fork node can be executed arbitrarily often.

3. after this merge node

since this node cannot

synchronize them.

2. via these

both paths ...

1. Two con-

trol-flows of

this fork node

can cause an

abundance ...

Figure 27. Detailed fault feedback for the
potential abundance in the merge node M2

3. and potentially

causes an abundance on

this edge.

2. is not

synchronized on

this path ...

1. A control-flow

of this fork node

...

Figure 28. Detailed feedback for a fault where
a fork node can generate any number of
control-flows

In summary, Mojo offers a detailed failure diagnostic regarding the causes of errors.
LoLA. LoLA’s state-space exploration can determine exactly one error. In addition to the

kind of error (deadlock or abundance), the approach provides a failure trace. Such a failure
trace is like a control-flow from the start edge containing the erroneous state (cf. Figure 29).
One way to visualize a failure trace is a simulation. In this simulation, the developer sees step
by step how the error is reached. It seems good that the developer receives error feedback for
a failure, which may actually occur at runtime. However, our previous work [10], [11] shows
that finding the cause of the error is very difficult due to fault distance, masking, illusion, and
blocking [9], [7]. Furthermore, most state-based approaches provide only a single error since
full exploration of the state-space often ends in a state-space explosion as mentioned earlier.

31

The result of a state-based approach is sufficient, but does not provide much diagnostic
information for the developer.

SESE. The SESE decomposition leads to a separation of the workflow into smaller
fragments (cf. Figure 30). However, Figure 30 shows that most nodes of the workflow are
located in an unstructured fragment. Unfortunately, all faults lie within this unstructured
subgraph and for these only heuristics exist that can determine errors. For this example, the
heuristics of Vanhatalo et al. [18] cannot be applied. As a result, the application of the SESE
decomposition cannot give error feedback to the developer. However, SESE decomposition
has its advantages for simple, well-structured workflows since the fault is easily recognizable
in illustrations.

(S,T1) (T1,M1)
T1

(M1,S1)
M1

(S1,F1)
S1 (F1,T4)

(F1,T5)
F1 (F1,T4)

(T5,S2)
T5

(F1,T4)
(S2,T6)

S2

(T4,M2)
(S2,T6)

(M2,T3)
(S2,T6)

(T3,J1)
(S2,T6)

M2 T4T3(T3,J1)
(T6,M1)

T6(T3,J1)
(M1,S1)

M1

(T3,J1)
(S1,T2)

S1

(T3,J1)
(T2,M2)

T2 (T3,J1)
(M2,T3)

M2 (T3,J1)
(T3,J1)

T3

Figure 29. Failure trace up to a deadlock and
abundance in the example workflow

Figure 30. SESE decomposition of the example
workflow

Conclusion. In summary, Mojo offers the best overview and the best diagnostic details for
the exemplary workflow.

8.3 Causes of Errors

In addition to the detailed consideration of a single example, we have applied all three tools
to the process library mentioned above. First, we considered which workflows of the library
are marked as unsound by the tools and how many faults/errors the tools find.

Mojo. Mojo identified 742 workflows as unsound and 644 as sound. Table 1 summarizes
the number of different kinds of faults (deadlocks and abundances) of the different
benchmarks. Abundances seem to occur more frequently than deadlocks. Table 2 (column
Mojo), p. 34, summarizes these results and allows their comparison with the other tools.
The total number of identified faults is high at 4 007. Each workflow therefore contains an
average of 2 to 3 faults.

Table 1. Number (of causes) of deadlocks and abundances

Mojo LoLA SESE
Deadlocks Abundances Deadlocks Abundances Deadlocks Abundances

A 140 170 97 68 0 0
B1 273 720 81 200 30 98
B2 326 948 84 238 36 113
B3 289 1 056 83 262 18 118
C 24 61 10 14 8 1

Sum 1 052 2 955 355 782 92 330
Total 4 007 1 137 422

LoLA. Table 1, column LoLA, shows the number of deadlocks and abundances identified
by the tool LoLA. LoLA identifies only a quarter of the number of errors (not faults!)
compared to Mojo. Since LoLA uses a state-space exploration, it stops the analysis at the
first identified error. In the standard configuration of LoLA, it performs one analysis for

32

deadlocks and one for abundances. Therefore, LoLA can detect a maximum of 2 errors. This
explains the small number of identified errors.

In a detailed comparison of all workflows, we found the following list of differences between
the results of both tools, Mojo and LoLA:

1. LoLA identifies an abundance where Mojo identifies nothing.
2. LoLA identifies an abundance where Mojo only identifies causes for deadlocks.
3. LoLA identifies an abundance and a deadlock where Mojo only identifies causes for

abundances.
4. LoLA identifies an abundance where Mojo identifies causes for abundances and deadlocks.
5. LoLA identifies a deadlock where Mojo identifies causes for abundances and deadlocks.

The worst case is that LoLA identifies an abundance where Mojo identifies nothing (1.).
This happens twice in the library. We have looked at both workflows in detail. The “fault”
seems to be that both workflows are unconnected. Since Mojo was developed to support the
development process of workflows, it can also handle unconnected graphs. It automatically
constructs a connected workflow based on the semantics of BPMN. In the resulting two
workflows, there is no fault. This might be the cause of the divergence but we do not know
how LoLA handles unconnected Petri nets.

Similar happens in the case that LoLA identifies an abundance where Mojo only identifies
causes for deadlocks (point 2 in the list of differences) — the cause of a deadlock cannot
lead to an abundance. This case occurs only once in the library and also that workflow is
unconnected. It contains a cause of deadlock that is easy to check. But LoLA identifies an
abundance due to its different strategy.

The last three mentioned workflows are the only ones in the library that are unconnected.
The library contains further 3 workflows in which LoLA reaches both an abundance and a
deadlock, but Mojo only identifies causes for abundances (point 3 in the list of differences). In
a detailed examination of these workflows, the deadlocks identified by LoLA are the result of
abundances in the workflow — these are cases of fault illusion [11]. In 171 workflows, LoLA
leads to abundances only where Mojo finds causes of deadlocks and abundances (point 4
in the list of differences). Each time LoLA finds an abundance, it interrupts its execution
for both abundance and deadlock analysis — these are cases of fault blocking [11]. Finally,
there are 205 workflows in which Mojo finds causes for deadlocks and abundances, but LoLA
identifies only deadlocks (point 5 in the list of differences). This happens since a state-based
approach like the one used in LoLA cannot find errors behind deadlocks having more cases
of fault blocking.

As an intermediate result, it can be emphasized that Mojo has identified more faults and
gave more detailed and accurate diagnostic information.

SESE. We also applied SESE to the process library. Table 1, column SESE, shows the
results for SESE. For the benchmark A, SESE provides less faults and diagnostic information,
since most faults are in unstructured subgraphs. The total number of identified faults is also
low. This is surprising because SESE finds faults behind other faults like Mojo. But faults
seem to occur more often in unstructured than in well-formed subgraphs. For this reason,
our implementation of SESE is not able to find these faults.

Conclusion. Table 2 emphasizes the differences between Mojo, LoLA, and SESE. The
derivation for these numbers in the case of SESE was more difficult. First, we identified
well-formed workflows. If SESE did not identified a fault, these workflows are sound. If a
fault was detected, then the workflows are unsound, regardless of whether it is well-formed
or not. For all other workflows, it is unknown whether they are sound or not. Overall, Mojo
uses the best approach to detect faults in workflows.

33

Table 2. The number of sound, unsound, and unknown workflows identified by the different tools

Mojo LoLA SESE
Total Sound Unsound Sound Unsound Sound Unsound Unknown

A 282 152 130 152 130 65 0 217
B1 288 107 181 107 181 75 92 121
B2 363 161 202 161 202 121 103 139
B3 421 207 214 207 214 144 107 170
C 32 17 15 15 17 9 7 16

Sum 1 386 ∗644 ∗742 ∗642 ∗744 414 309 663
∗ Please see the text for the explanation of the reasons for the differences

8.4 Time Behavior

Finally, the evaluation examines how much time Mojo spends on its analyses. For its
application in practice, the time required is an important quality criterion. In 2009, a
soundness analysis about 5 seconds for a single workflow was described as efficient [24].
But a latency of 5 seconds is too slow to apply for soundness analysis at development time.

The consideration of the time behavior is difficult, because there are side effects of
hardware, operating system, and Java runtime environment. More detailed information about
how the following times were measured can be found in the appendix of the previous work
[10].

Figure 31 shows the distribution of the analysis times spent for the different workflows
with Mojo. The main subset of the workflows (about 87%) needs less than 1 and 95% less
than 2 milliseconds. Mojo is fast and should be able to analyze a workflow without visible
delay in a workflow designer. It requires a minimum of 0.03ms per workflow, a median
0.25ms, and a maximum of 23.25ms.

Figure 32 summarizes the total analysis times. The deadlock and abundance analysis
runs in parallel. Therefore about half of the total analysis time is needed for input,
transformations, and others. In total, Mojo required 817.68ms.

Time distribution of compositions (Mojo)

Time [ms]

A
bs

ol
ut

e
fr

eq
ue

nc
y

of
 s

er
vi

ce
 c

om
po

si
tio

ns

0 5 10 15 20 25

0
20

0
60

0
10

00
14

00

1210

106
24 13 13 7 4 1 2 2 1 1 1 1

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

R
el

at
iv

e
fr

eq
ue

nc
y

de
ns

ity

Figure 31. Distribution of the analysis times for
Mojo

Mojo
DL ms AB ms Total ms

A 75.55 89.73 169.53
B1 70.62 92.92 165.92
B2 79.46 93.45 196.60
B3 129.10 157.13 258.04
C 8.53 12.28 27.60

Sum 363.27 445.50 817.68
DL = deadlock analysis, AB = abundance analysis

Figure 32. Analysis times for the library
with Mojo

In addition to the total runtimes, the asymptotic runtime behavior of Mojo was also
considered as a function of the size of the entire workflow graph. An important indicator for
the size of a workflow is the number of edges, |E|. Figures 33 and 34 show the analysis times
concerning the number of edges. The former takes into account the time in milliseconds; the
latter shows the asymptotic runtime behavior. The asymptotic behavior is determined by
the exponent e of |E|e. The line was interpolated for a smooth line. Otherwise, it would be
difficult to detect the trend. The time spent increases with the number of edges, obviously
(Figure 33). The asymptotic runtime behavior tends to a value of 2.0 (Figure 34). In practice,
Mojo seems to have a quadratic asymptotic runtime O(E2).

34

0 200 400 600 800

0
2

4
6

8
10

12

Time behavior as a function of the number of edges

Number of edges

T
im

e
[m

s]
Total time
Deadlock analysis
Abundance analysis

Figure 33. Runtime as a function of the
number of edges

0 200 400 600 800

1.
0

1.
5

2.
0

2.
5

Asymptotic time behavior as a function of the number of edges

Number of edges

E
xp

on
en

t e
in

 E
e

Total runtime behavior (TRB)
TRB deadlock analysis
TRB abundance analysis
E2

Figure 34. Asymptotic runtime behavior as a
function of the number of edges

In summary, Mojo’s better diagnostic information is not the result of time-consuming
analyses. In practice, the runtime complexity is quadratic.

9 Conclusion

The soundness notion describes the absence of errors such as deadlocks and abundances
instead of their faults. Therefore, the usual analysis techniques for soundness checking try
to find only errors. However, there is a gap between the error and its causes (the faults),
the so-called fault distance. This gap becomes larger in cases of fault blocking, masking, and
illusion [10], [11]. Our motivation for this article was to develop new techniques that directly
find causes of deadlocks and abundances.

This article reviewed the basics of workflow verification. It recapitulated the existing
techniques in the state of the art. These techniques are either incomplete, have sparse
diagnostic information, are restricted by finding only errors, or are too complex in terms
of their asymptotic runtime complexity. We showed that it is possible to define soundness
through the absence of the causes of deadlocks and abundances. This definition can be
used to find qualitative fault analysis results. In the worst case, our approaches have a
cubic asymptotic runtime complexity, although the approaches provide accurate diagnostic
information. Our approaches are also able to find faults without visible delays during
construction. The algorithms are based on a partial analysis, which allows a partial
consideration of the workflow behavior.

In short, deadlocks occur when at least one, but not all, incoming edges of a join node
receive tokens. To avoid deadlocks in join nodes, either none or all of their incoming edges
must get tokens. This is ensured by the activation edges of the join nodes. A token on an
activation edge follows the execution of the join node in the future. If a path to a join
node does not pass an activation edge, then a token can reach the join node, but it is
not guaranteed that the join node will be executed — the workflow can lock. This article
presented algorithms, how the activation edges of a join node and how the deadlock faults
can be found.

Abundances occur when two control-flows are not synchronized. Such a synchronization
should happen when two control-flows meet for the first time. These locations are called
intersections. Finding causes of abundances is to check whether it is possible to reach an
intersection with two control-flows at the same time. This is possible when two disjoint
paths from a fork node to an intersection are executable by two independent control-flows.
Independence is ensured if there is no join node on both paths where the intersection is an
activation edge. The resulting algorithm is based on the SSA form and the maximum flow
problem.

35

We validated that the algorithms convince in practice. All algorithms are implemented in
our tool Mojo. An evaluation with a workflow library and two further soundness detection
approaches leads to more faults, more diagnostic information, and fast analysis times for
Mojo. Regarding this tool comparison, our algorithms seem to be the best currently used in
research.

In the future, we want to investigate in a study how novices and domain experts use Mojo
in a business process modeler like Activiti, how helpful they find the diagnostic information,
and how well Mojo influences the design process. Furthermore, we want to extend the
algorithms to handle workflows with Or-join nodes, as they occur frequently in practice. Our
first complete semantics might be helpful [67]. Another research topic is the overall system
for the development, storage, and execution of workflows [61]. So far Mojo only accepts the
structure of workflows without data information. As mentioned in earlier work [61], defining
a clean intermediate representation for workflows that allows both control-flow and data-flow
analyses is profitable. One possibility is the extended workflow graph [68]. Another option is
a fold-out graphs [63] based on the concepts of SafeTSA [69]. Besides the pure intermediate
representation, the algorithms have to be extended to process the data information for
soundness analysis. For instance, after the application of the restructuring and enfolding
of Heinze et al. [70], [71], [72], [73], our algorithms can be applied. All these algorithms
can also have an application in a runtime environment. Such a runtime environment is a
virtual machine that reads, verifies, and executes a workflow [62]. The verification step can
be accelerated by annotating diagnostic information. The diagnostic information can be also
used to correct the workflow during a simulation.

References

[1] T. H. Davenport, Process Innovation: Reengineering Work Through Information Technology.
Boston, MA, USA: Harvard Business School Press, 1993.

[2] W. Kirk, Public Management: Gestaltung von Dienstleistungen im allgemeinen Interesse -
Prozessmanagement (Public Management: Designing services of general interest - Process
management) [Series Die öffentliche Verwaltung der Bundesrepublik Deutschland auf dem
Weg zum Verwaltungsbetrieb (The public administration of the Federal Republic of Germany
on its way to administrative operation), Volume 8], 1st ed. Norderstedt, Germany: Books on
Demand, Dec. 2010.

[3] Object Management Group (OMG), “Business Process Model and Notation (BPMN) Version
2.0. formal/2011-01-03. http://www.omg.org/spec/BPMN/2.0.” OMG, Jan. 2011, standard.
[Online]. Available: http://www.omg.org/spec/BPMN/2.0

[4] D. Fahland, C. Favre, J. Koehler, N. Lohmann, H. Völzer, and K. Wolf, “Analysis
on demand: Instantaneous soundness checking of industrial business process models,”
Data Knowl. Eng., vol. 70, no. 5, pp. 448–466, 2011. [Online]. Available: https:
//doi.org/10.1016/j.datak.2011.01.004

[5] W. Sadiq and M. E. Orlowska, “Analyzing process models using graph reduction
techniques,” Inf. Syst., vol. 25, no. 2, pp. 117–134, 2000. [Online]. Available: https:
//doi.org/10.1016/S0306-4379(00)00012-0

[6] W. M. P. van der Aalst, “The application of petri nets to workflow management,” Journal
of Circuits, Systems, and Computers, vol. 8, no. 1, pp. 21–66, 1998. [Online]. Available:
https://doi.org/10.1142/S0218126698000043

[7] IEEE Computer Society, “IEEE Standard Glossary of Software Engineering Terminology.
610.12-1990,” Dec 1990.

36

http://www.omg.org/spec/BPMN/2.0
http://www.omg.org/spec/BPMN/2.0
https://doi.org/10.1016/j.datak.2011.01.004
https://doi.org/10.1016/j.datak.2011.01.004
https://doi.org/10.1016/S0306-4379(00)00012-0
https://doi.org/10.1016/S0306-4379(00)00012-0
https://doi.org/10.1142/S0218126698000043

[8] B. Marick, The Craft of Software Testing: Subsystem Testing. Including Object-Based and
Object-Oriented Testing, 1st ed. New Jersey, USA: Prentice Hall PTR, Jan. 1995.

[9] M. A. Friedman and J. M. Voas, Software Assessment: Reliability, Safety, Testability (Series
New Dimensions In Engineering Series, Book 16), 1st ed. New York, NY, USA: John Wiley
& Sons, Inc., Aug. 1995.

[10] T. M. Prinz and W. Amme, “Why We Need Advanced Analyses of Service Compositions,” in
SERVICE COMPUTATION 2017: The Ninth International Conferences on Advanced Service
Computing, Athens, Greece, February 19–23, 2017. Proceedings, M. de Barros, J. Klink, T. Uhl,
and T. M. Prinz, Eds. ThinkMind Digital Library, 2017, pp. 48–54.

[11] T. M. Prinz and W. Amme, “Why We Need Static Analyses of Service Compositions — Fault
vs. Error Analysis of Soundness,” International Journal on Advances in Intelligent Systems,
vol. 10, no. 3 & 4, pp. 458–473, Dec. 2017, ISSN 1942-2679.

[12] W. Reisig, “The linear theory of multiset based dynamic systems,” in Multiset Processing,
Mathematical, Computer Science, and Molecular Computing Points of View [Workshop on
Multiset Processing, WMP 2000, Curtea de Arges, Romania, August 21-25, 2000], C. Calude,
G. Puaun, G. Rozenberg, and A. Salomaa, Eds., vol. 2235, Lecture Notes in Computer Science.
Springer, 2000, pp. 287–298. [Online]. Available: https://doi.org/10.1007/3-540-45523-X_15

[13] K. H. Rosen, Discrete Mathematics and Its Applications, 7th ed. New York, USA: Mcgraw-Hill
Education Ltd, Aug. 2012.

[14] G. Chartrand and P. Zhang, Discrete Mathematics, 1st ed. Long Grove, Illinois, USA:
Waveland Press, Inc., Mar. 2011, iSBN 978-1577667308.

[15] T. H. Cormen, C. E. Leiserson, R. Rivest, and C. Stein, Introduction to Algorithms, 3rd ed.
Massachusetts, USA: The MIT Press, Dec. 2013.

[16] M. Bossert and M. Breitbach, Digitale Netze [Serie Informationstechnik] (Digital networks
[Information technology series]), 1st ed. Stuttgart, Leipzig: Teubner Verlag, Mar. 1999.

[17] H. Zima and B. Chapman, Supercompilers for Parallel and Vector Computers. New York,
NY, USA: ACM Press Frontier Series, Jan. 1991.

[18] J. Vanhatalo, H. Völzer, and F. Leymann, “Faster and more focused control-flow
analysis for business process models through SESE decomposition,” in Service-Oriented
Computing - ICSOC 2007, Fifth International Conference, Vienna, Austria, September
17-20, 2007, Proceedings, B. J. Krämer, K. Lin, and P. Narasimhan, Eds., vol. 4749,
Lecture Notes in Computer Science. Springer, 2007, pp. 43–55. [Online]. Available:
https://doi.org/10.1007/978-3-540-74974-5_4

[19] H. Völzer, “A new semantics for the inclusive converging gateway in safe processes,” in
Business Process Management - 8th International Conference, BPM 2010, Hoboken, NJ,
USA, September 13-16, 2010. Proceedings, R. Hull, J. Mendling, and S. Tai, Eds., vol.
6336, Lecture Notes in Computer Science. Springer, 2010, pp. 294–309. [Online]. Available:
https://doi.org/10.1007/978-3-642-15618-2_21

[20] W. M. P. van der Aalst, “Interval timed coloured petri nets and their analysis,” in Application
and Theory of Petri Nets 1993, 14th International Conference, Chicago, Illinois, USA, June
21-25, 1993, Proceedings, M. A. Marsan, Ed., vol. 691, Lecture Notes in Computer Science.
Springer, 1993, pp. 453–472. [Online]. Available: https://doi.org/10.1007/3-540-56863-8_61

[21] K. R. Apt, N. Francez, and S. Katz, “Appraising fairness in languages for distributed
programming,” Distributed Computing, vol. 2, no. 4, pp. 226–241, 1988. [Online]. Available:
https://doi.org/10.1007/BF01872848

37

https://doi.org/10.1007/3-540-45523-X_15
https://doi.org/10.1007/978-3-540-74974-5_4
https://doi.org/10.1007/978-3-642-15618-2_21
https://doi.org/10.1007/3-540-56863-8_61
https://doi.org/10.1007/BF01872848

[22] E. Kindler and W. M. P. van der Aalst, “Liveness, fairness, and recurrence in
petri nets,” Inf. Process. Lett., vol. 70, no. 6, pp. 269–274, 1999. [Online]. Available:
https://doi.org/10.1016/S0020-0190(99)00074-5

[23] T. Murata, “Petri Nets: Properties, Analysis and Applications,” Proceedings of the IEEE,
vol. 77, no. 4, pp. 541–580, Apr. 1989.

[24] M. T. Wynn, H. M. W. Verbeek, W. M. P. van der Aalst, A. H. M. ter Hofstede, and
D. Edmond, “Business process verification - finally a reality!” Business Proc. Manag. Journal,
vol. 15, no. 1, pp. 74–92, 2009. [Online]. Available: https://doi.org/10.1108/14637150910931479

[25] W. M. P. van der Aalst, “A class of Petri nets for modeling and analyzing business processes,”
Eindhoven University of Technology, Eindhoven, Netherlands, Computing Science Reports
95/26, 1995, technical Report.

[26] F. Puhlmann, “Soundness verification of business processes specified in the pi-calculus,” in
On the Move to Meaningful Internet Systems 2007: CoopIS, DOA, ODBASE, GADA, and IS,
OTM Confederated International Conferences CoopIS, DOA, ODBASE, GADA, and IS 2007,
Vilamoura, Portugal, November 25-30, 2007, Proceedings, Part I, R. Meersman and Z. Tari,
Eds., vol. 4803, Lecture Notes in Computer Science. Springer, 2007, pp. 6–23. [Online].
Available: https://doi.org/10.1007/978-3-540-76848-7_3

[27] W. M. P. van der Aalst, K. M. van Hee, A. H. M. ter Hofstede, N. Sidorova, H. M. W.
Verbeek, M. Voorhoeve, and M. T. Wynn, “Soundness of workflow nets: classification,
decidability, and analysis,” Formal Asp. Comput., vol. 23, no. 3, pp. 333–363, 2011. [Online].
Available: https://doi.org/10.1007/s00165-010-0161-4

[28] J. Desel and J. Esparza, Free Choice Petri Nets (Cambridge Tracts in Theoretical
Computer Science 40). Cambridge, Great Britain: Cambridge University Press, 1995, iSBN
0-521-46519-2.

[29] P. Kemper and F. Bause, “An efficient polynomial-time algorithm to decide liveness and
boundedness of free-choice nets,” in Application and Theory of Petri Nets 1992, 13th
International Conference, Sheffield, UK, June 22-26, 1992, Proceedings, K. Jensen, Ed., vol.
616, Lecture Notes in Computer Science. Springer, 1992, pp. 263–278. [Online]. Available:
https://doi.org/10.1007/3-540-55676-1_15

[30] C. Favre and H. Völzer, “Symbolic execution of acyclic workflow graphs,” in Business
Process Management - 8th International Conference, BPM 2010, Hoboken, NJ, USA,
September 13-16, 2010. Proceedings, R. Hull, J. Mendling, and S. Tai, Eds., vol. 6336,
Lecture Notes in Computer Science. Springer, 2010, pp. 260–275. [Online]. Available:
https://doi.org/10.1007/978-3-642-15618-2_19

[31] W. M. P. van der Aalst, A. Hirnschall, and H. M. W. Verbeek, “An alternative
way to analyze workflow graphs,” in Advanced Information Systems Engineering, 14th
International Conference, CAiSE 2002, Toronto, Canada, May 27-31, 2002, Proceedings,
A. B. Pidduck, J. Mylopoulos, C. C. Woo, and M. T. Özsu, Eds., vol. 2348,
Lecture Notes in Computer Science. Springer, 2002, pp. 535–552. [Online]. Available:
https://doi.org/10.1007/3-540-47961-9_37

[32] C. Favre, D. Fahland, and H. Völzer, “The relationship between workflow graphs and
free-choice workflow nets,” Inf. Syst., vol. 47, pp. 197–219, 2015. [Online]. Available:
https://doi.org/10.1016/j.is.2013.12.004

[33] W. M. P. van der Aalst and A. H. M. ter Hofstede, “YAWL: yet another
workflow language,” Inf. Syst., vol. 30, no. 4, pp. 245–275, 2005. [Online]. Available:
https://doi.org/10.1016/j.is.2004.02.002

38

https://doi.org/10.1016/S0020-0190(99)00074-5
https://doi.org/10.1108/14637150910931479
https://doi.org/10.1007/978-3-540-76848-7_3
https://doi.org/10.1007/s00165-010-0161-4
https://doi.org/10.1007/3-540-55676-1_15
https://doi.org/10.1007/978-3-642-15618-2_19
https://doi.org/10.1007/3-540-47961-9_37
https://doi.org/10.1016/j.is.2013.12.004
https://doi.org/10.1016/j.is.2004.02.002

[34] P. Chrzastowski-Wachtel, B. Benatallah, R. Hamadi, M. O’Dell, and A. Susanto, “A
top-down petri net-based approach for dynamic workflow modeling,” in Business Process
Management, International Conference, BPM 2003, Eindhoven, The Netherlands, June 26-27,
2003, Proceedings, W. M. P. van der Aalst, A. H. M. ter Hofstede, and M. Weske, Eds., vol.
2678, Lecture Notes in Computer Science. Springer, 2003, pp. 336–353. [Online]. Available:
https://doi.org/10.1007/3-540-44895-0_23

[35] R. Johnson, D. Pearson, and K. Pingali, “Finding regions fast: Single entry single exit and
control regions in linear time. tr 93-1365.” Cornell University, Ithaca, NY, USA, Technical
Report, Jul. 1993.

[36] R. Johnson, D. Pearson, and K. Pingali, “The program structure tree: Computing control
regions in linear time,” in Proceedings of the ACM SIGPLAN’94 Conference on Programming
Language Design and Implementation (PLDI), Orlando, Florida, USA, June 20-24, 1994,
V. Sarkar, B. G. Ryder, and M. L. Soffa, Eds. ACM, 1994, pp. 171–185. [Online]. Available:
https://doi.org/10.1145/178243.178258

[37] C. S. Ananian, “The Static Single Information Form. mit-lcs-tr-801. technical report,”
Massachusetts Institute of Technology (MIT), Tech. Rep., Sep. 1999, [Online]. Available on
http://www.lcs.mit.edu/publications/pubs/pdf/MIT-LCS-TR-801.pdf.

[38] J. Vanhatalo, H. Völzer, and J. Koehler, “The refined process structure tree,”
Data Knowl. Eng., vol. 68, no. 9, pp. 793–818, 2009. [Online]. Available: https:
//doi.org/10.1016/j.datak.2009.02.015

[39] J. E. Hopcroft and R. E. Tarjan, “Dividing a graph into triconnected components,” SIAM J.
Comput., vol. 2, no. 3, pp. 135–158, 1973. [Online]. Available: https://doi.org/10.1137/0202012

[40] J. Vanhatalo, H. Völzer, F. Leymann, and S. Moser, “Automatic workflow graph refactoring
and completion,” in Service-Oriented Computing - ICSOC 2008, 6th International Conference,
Sydney, Australia, December 1-5, 2008. Proceedings, A. Bouguettaya, I. Krüger, and
T. Margaria, Eds., vol. 5364, Lecture Notes in Computer Science, 2008, pp. 100–115. [Online].
Available: https://doi.org/10.1007/978-3-540-89652-4_11

[41] S. Kühne, H. Kern, V. Gruhn, and R. Laue, “Business process modeling with continuous
validation,” Journal of Software Maintenance and Evolution, vol. 22, no. 6-7, pp. 547–566,
2010. [Online]. Available: https://doi.org/10.1002/smr.517

[42] W. M. P. van der Aalst, “Verification of workflow nets,” in Application and Theory of Petri
Nets 1997, 18th International Conference, ICATPN ’97, Toulouse, France, June 23-27, 1997,
Proceedings, P. Azéma and G. Balbo, Eds., vol. 1248, Lecture Notes in Computer Science.
Springer, 1997, pp. 407–426. [Online]. Available: https://doi.org/10.1007/3-540-63139-9_48

[43] A. Valmari, “The state explosion problem,” in Lectures on Petri Nets I: Basic Models,
Advances in Petri Nets, the volumes are based on the Advanced Course on Petri
Nets, held in Dagstuhl, September 1996, W. Reisig and G. Rozenberg, Eds., vol. 1491,
Lecture Notes in Computer Science. Springer, 1996, pp. 429–528. [Online]. Available:
https://doi.org/10.1007/3-540-65306-6_21

[44] A. Cheng, J. Esparza, and J. Palsberg, “Complexity results for 1-safe nets,” Theor.
Comput. Sci., vol. 147, no. 1–2, pp. 117–136, 1995. [Online]. Available: https:
//doi.org/10.1016/0304-3975(94)00231-7

[45] N. Lohmann and D. Fahland, “Where did I go wrong? - explaining errors in business process
models,” in Business Process Management - 12th International Conference, BPM 2014, Haifa,
Israel, September 7-11, 2014. Proceedings, S. W. Sadiq, P. Soffer, and H. Völzer, Eds., vol.
8659, Lecture Notes in Computer Science. Springer, 2014, pp. 283–300. [Online]. Available:
https://doi.org/10.1007/978-3-319-10172-9_18

39

https://doi.org/10.1007/3-540-44895-0_23
https://doi.org/10.1145/178243.178258
http://www.lcs.mit.edu/publications/pubs/pdf/MIT-LCS-TR-801.pdf
https://doi.org/10.1016/j.datak.2009.02.015
https://doi.org/10.1016/j.datak.2009.02.015
https://doi.org/10.1137/0202012
https://doi.org/10.1007/978-3-540-89652-4_11
https://doi.org/10.1002/smr.517
https://doi.org/10.1007/3-540-63139-9_48
https://doi.org/10.1007/3-540-65306-6_21
https://doi.org/10.1016/0304-3975(94)00231-7
https://doi.org/10.1016/0304-3975(94)00231-7
https://doi.org/10.1007/978-3-319-10172-9_18

[46] H. M. W. Verbeek, T. Basten, and W. M. P. van der Aalst, “Diagnosing workflow
processes using woflan,” Comput. J., vol. 44, no. 4, pp. 246–279, 2001. [Online]. Available:
https://doi.org/10.1093/comjnl/44.4.246

[47] K. Schmidt, “Lola: A low level analyser,” in Application and Theory of Petri Nets 2000, 21st
International Conference, ICATPN 2000, Aarhus, Denmark, June 26-30, 2000, Proceeding,
M. Nielsen and D. Simpson, Eds., vol. 1825, Lecture Notes in Computer Science. Springer,
2000, pp. 465–474. [Online]. Available: https://doi.org/10.1007/3-540-44988-4_27

[48] R. Eshuis and A. Kumar, “An integer programming based approach for verification and
diagnosis of workflows,” Data Knowl. Eng., vol. 69, no. 8, pp. 816–835, 2010. [Online].
Available: https://doi.org/10.1016/j.datak.2010.03.003

[49] B. F. van Dongen, J. Mendling, and W. M. P. van der Aalst, “Structural patterns
for soundness of business process models,” in Tenth IEEE International Enterprise
Distributed Object Computing Conference (EDOC 2006), 16-20 October 2006, Hong
Kong, China. IEEE Computer Society, 2006, pp. 116–128. [Online]. Available: https:
//doi.org/10.1109/EDOC.2006.56

[50] C. Favre, H. Völzer, and P. Müller, “Diagnostic information for control-flow analysis
of workflow graphs (a.k.a. free-choice workflow nets),” in Tools and Algorithms for the
Construction and Analysis of Systems - 22nd International Conference, TACAS 2016, Held
as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS
2016, Eindhoven, The Netherlands, April 2-8, 2016, Proceedings, M. Chechik and J. Raskin,
Eds., vol. 9636, Lecture Notes in Computer Science. Springer, 2016, pp. 463–479. [Online].
Available: https://doi.org/10.1007/978-3-662-49674-9_27

[51] Y. Choi, P. Kongsuwan, C. M. Joo, and J. L. Zhao, “Stepwise structural verification of cyclic
workflow models with acyclic decomposition and reduction of loops,” Data Knowl. Eng.,
vol. 95, pp. 39–65, 2015. [Online]. Available: https://doi.org/10.1016/j.datak.2014.11.003

[52] P. J. Pahl and R. Damrath, Mathematical Foundations of Computational Engineering: A
Handbook, 1st ed. Berlin, Germany: Springer, Jul. 2001.

[53] B. Alpern, M. N. Wegman, and F. K. Zadeck, “Detecting equality of variables in programs,”
in Conference Record of the Fifteenth Annual ACM Symposium on Principles of Programming
Languages, San Diego, California, USA, January 10-13, 1988, J. Ferrante and P. Mager, Eds.
ACM Press, 1988, pp. 1–11. [Online]. Available: https://doi.org/10.1145/73560.73561

[54] B. K. Rosen, M. N. Wegman, and F. K. Zadeck, “Global value numbers and redundant
computations,” in Conference Record of the Fifteenth Annual ACM Symposium on
Principles of Programming Languages, San Diego, California, USA, January 10-13, 1988,
J. Ferrante and P. Mager, Eds. ACM Press, 1988, pp. 12–27. [Online]. Available:
https://doi.org/10.1145/73560.73562

[55] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck, “Efficiently
computing static single assignment form and the control dependence graph,” ACM
Trans. Program. Lang. Syst., vol. 13, no. 4, pp. 451–490, 1991. [Online]. Available:
https://doi.org/10.1145/115372.115320

[56] T. Lengauer and R. E. Tarjan, “A fast algorithm for finding dominators in a flowgraph,”
ACM Trans. Program. Lang. Syst., vol. 1, no. 1, pp. 121–141, 1979. [Online]. Available:
https://doi.org/10.1145/357062.357071

[57] K. D. Cooper, T. J. Harvey, and K. Kennedy, “A Simple, Fast Dominance Algorithm.
tr-06-33870. technical report,” Department of Computer Science, Rice University, , Houston,
Texas, USA, Tech. Rep., 2001, [Online]. Available on https://www.cs.rice.edu/~keith/
EMBED/dom.pdf.

40

https://doi.org/10.1093/comjnl/44.4.246
https://doi.org/10.1007/3-540-44988-4_27
https://doi.org/10.1016/j.datak.2010.03.003
https://doi.org/10.1109/EDOC.2006.56
https://doi.org/10.1109/EDOC.2006.56
https://doi.org/10.1007/978-3-662-49674-9_27
https://doi.org/10.1016/j.datak.2014.11.003
https://doi.org/10.1145/73560.73561
https://doi.org/10.1145/73560.73562
https://doi.org/10.1145/115372.115320
https://doi.org/10.1145/357062.357071
https://www.cs.rice.edu/~keith/EMBED/dom.pdf
https://www.cs.rice.edu/~keith/EMBED/dom.pdf

[58] T. E. Harris and F. S. Ross, Fundamentals of a Method for Evaluating Rail Net Capacities,
1st ed. Santa Monica, California, USA: Armed Services Technical Information Agency, Oct.
1955, rM-1573. A report prepared for United States Air Force Project RAND.

[59] J. Lestor R. Ford and D. R. Fulkerson, Flows in Networks, 1st ed. Santa Monica, California,
USA: Princeton University Press, Aug. 1962, r-375-PR. A report prepared for United States
Air Force Project RAND.

[60] T. M. Prinz, N. Spieß, and W. Amme, “A first step towards a compiler for business
processes,” in Compiler Construction - 23rd International Conference, CC 2014, Held as
Part of the European Joint Conferences on Theory and Practice of Software, ETAPS
2014, Grenoble, France, April 5-13, 2014. Proceedings, A. Cohen, Ed., vol. 8409,
Lecture Notes in Computer Science. Springer, 2014, pp. 238–243. [Online]. Available:
https://doi.org/10.1007/978-3-642-54807-9_14

[61] T. M. Prinz, T. S. Heinze, W. Amme, J. Kretzschmar, and C. Beckstein, “Towards a Compiler
for Business Processes - A Research Agenda,” in SERVICE COMPUTATION 2015: The
Seventh International Conferences on Advanced Service Computing, Nice, France, March
22–27, 2015. Proceedings, M. de Barros and C.-P. Rückemann, Eds., 2015, pp. 49–54.

[62] T. M. Prinz, “Proposals for a virtual machine for business processes,” in Proceedings
of the 7th Central European Workshop on Services and their Composition, ZEUS 2015,
Jena, Germany, February 19-20, 2015., ser. CEUR Workshop Proceedings, T. S. Heinze
and T. M. Prinz, Eds., vol. 1360. CEUR-WS.org, 2015, pp. 10–17. [Online]. Available:
http://ceur-ws.org/Vol-1360/paper2.pdf

[63] T. M. Prinz, R. Charrondière, and W. Amme, “Geschäftsprozesse kompiliert - Wichtige
Unterstützung für die Modellierung (business processes compiled — important support for
the construction),” in Proceedings 18. Kolloquium Programmiersprachen und Grundlagen der
Programmierung, KPS 2015, Pörtschach am Wörthersee, Austria, October 5–7, 2015, J. Knoop
and M. A. Ertl, Eds., 2015, pp. 476–491.

[64] M. Weber and E. Kindler, “The petri net markup language,” in Petri Net Technology for
Communication-Based Systems - Advances in Petri Nets, H. Ehrig, W. Reisig, G. Rozenberg,
and H. Weber, Eds., vol. 2472, Lecture Notes in Computer Science. Springer, 2003, pp.
124–144. [Online]. Available: https://doi.org/10.1007/978-3-540-40022-6_7

[65] B. Kiepuszewski, A. H. M. ter Hofstede, and W. M. P. van der Aalst, “Fundamentals of
control flow in workflows,” Acta Inf., vol. 39, no. 3, pp. 143–209, 2003. [Online]. Available:
https://doi.org/10.1007/s00236-002-0105-4

[66] A. Polyvyanyy and M. Weidlich, “Towards a compendium of process technologies - the
jbpt library for process model analysis,” in Proceedings of the CAiSE’13 Forum at the
25th International Conference on Advanced Information Systems Engineering (CAiSE),
Valencia, Spain, June 20th, 2013, ser. CEUR Workshop Proceedings, R. Deneckère and
H. A. Proper, Eds., vol. 998. CEUR-WS.org, 2013, pp. 106–113. [Online]. Available:
http://ceur-ws.org/Vol-998/Paper14.pdf

[67] T. M. Prinz and W. Amme, “A complete and the most liberal semantics for converging
OR gateways in sound processes,” CSIMQ, vol. 4, pp. 32–49, 2015. [Online]. Available:
https://doi.org/10.7250/csimq.2015-4.03

[68] W. Amme, A. Martens, and S. Moser, “Advanced verification of distributed WS-BPEL
business processes incorporating cssa-based data flow analysis,” IJBPIM, vol. 4, no. 1, pp.
47–59, 2009. [Online]. Available: https://doi.org/10.1504/IJBPIM.2009.026985

41

https://doi.org/10.1007/978-3-642-54807-9_14
http://ceur-ws.org/Vol-1360/paper2.pdf
https://doi.org/10.1007/978-3-540-40022-6_7
https://doi.org/10.1007/s00236-002-0105-4
http://ceur-ws.org/Vol-998/Paper14.pdf
https://doi.org/10.7250/csimq.2015-4.03
https://doi.org/10.1504/IJBPIM.2009.026985

[69] W. Amme, J. von Ronne, and M. Franz, “Ssa-based mobile code: Implementation
and empirical evaluation,” TACO, vol. 4, no. 2, p. 13, 2007. [Online]. Available:
https://doi.org/10.1145/1250727.1250733

[70] T. S. Heinze, “Eine methode zur kontrollierten kontrollflussentfaltung und ihre
anwendung zur präzisierung petrinetzbasierter verifikationsmodelle (a method for controlled
control-flow-unfolding and its application to the refinement of petri-net-based verification
models),” Ph.D. dissertation, Friedrich Schiller University of Jena, Germany, 2013. [Online].
Available: http://d-nb.info/104689952X

[71] T. S. Heinze, W. Amme, and S. Moser, “A restructuring method for WS-BPEL
business processes based on extended workflow graphs,” in Business Process Management,
7th International Conference, BPM 2009, Ulm, Germany, September 8-10, 2009.
Proceedings, U. Dayal, J. Eder, J. Koehler, and H. A. Reijers, Eds., vol. 5701,
Lecture Notes in Computer Science. Springer, 2009, pp. 211–228. [Online]. Available:
https://doi.org/10.1007/978-3-642-03848-8_15

[72] T. S. Heinze, W. Amme, and S. Moser, “Compiling more precise petri net models
for an improved verification of service implementations,” in 7th IEEE International
Conference on Service-Oriented Computing and Applications, SOCA 2014, Matsue, Japan,
November 17-19, 2014. IEEE Computer Society, 2014, pp. 25–32. [Online]. Available:
https://doi.org/10.1109/SOCA.2014.8

[73] T. S. Heinze, W. Amme, and S. Moser, “Process restructuring in the presence of
message-dependent variables,” in Service-Oriented Computing - ICSOC 2010 International
Workshops, PAASC, WESOA, SEE, and SOC-LOG, San Francisco, CA, USA, December
7-10, 2010, Revised Selected Papers, E. M. Maximilien, G. Rossi, S. Yuan, H. Ludwig, and
M. Fantinato, Eds., vol. 6568, Lecture Notes in Computer Science. Springer, 2010, pp.
121–132. [Online]. Available: https://doi.org/10.1007/978-3-642-19394-1_13

[74] R. Hull, J. Mendling, and S. Tai, Eds., Business Process Management - 8th International
Conference, BPM 2010, Hoboken, NJ, USA, September 13-16, 2010. Proceedings,
vol. 6336, Lecture Notes in Computer Science. Springer, 2010. [Online]. Available:
https://doi.org/10.1007/978-3-642-15618-2

[75] J. Ferrante and P. Mager, Eds., Conference Record of the Fifteenth Annual ACM Symposium
on Principles of Programming Languages, San Diego, California, USA, January 10-13, 1988.
ACM Press, 1988. [Online]. Available: http://dl.acm.org/citation.cfm?id=73560

42

https://doi.org/10.1145/1250727.1250733
http://d-nb.info/104689952X
https://doi.org/10.1007/978-3-642-03848-8_15
https://doi.org/10.1109/SOCA.2014.8
https://doi.org/10.1007/978-3-642-19394-1_13
https://doi.org/10.1007/978-3-642-15618-2
http://dl.acm.org/citation.cfm?id=73560

Appendix
Proof (Theorem 1). This proof is done by mathematical induction. A path Pl = (e0, . . . , el), l ≥ 1, is assumed and induced
over its length l. The basis of the induction, l = 1, is trivial: Either there is a strictly reachable state of 〈e0〉, in which e1 has a
token (and thus such a control-flow exists), or, there is no such state, but then 〈e0〉 is already a deadlock.

In the step case, l, it is assumed that this theorem is valid for all paths of length l. It is checked whether it is also valid for
all paths of length l + 1. There are two cases for the path Pl and a matching control-flow fe0 :

1. Case fe0 has a deadlock. Therefore, it also has a deadlock for l + 1. ✓
2. Case fe0 puts a token at each edge of path Pl. Let Sl ∈ fe0 be the state that contains el. For Sl is valid:

1. There is a reachable state Sl+1 from Sl in which el+1 has a token. So there is a control-flow of e0 which of course puts
a token at each edge of Pl+1. ✓

2. There is no reachable state from Sl containing el+1. Therefore, fe0 ends in a deadlock since tgt(el) is active but never
executed. ✓

Proof (Theorem 2). Let (S0, S1, S2, . . .) = fe ∈ Fe be a control-flow of edge e and S′ = S \ 〈e〉 be the state without one token
on e. There are two cases:

Case 1 fe is infinite. A computation that contains fe, can be made by the set union of each state of the control-flow with the
state S′: (S0 ∪ S′, S1 ∪ S′, S2 ∪ S′, . . .) ∈ CS .

Case 2 fe is finite. Let fe end in a state Sl, l ∈ N. A resulting computation is similar to the infinite case. However, another
computation that starts in the state Sl ∪ S′ must be extended (depicted with the concatenation symbol +) to meet
Definition 9: (

(S0 ∪ S′, S1 ∪ S′, S2 ∪ S′, . . . , Sl ∪ S′) + cSl∪S′
)
∈ CS , cSl∪S′ ∈ CSl∪S′

Proof (Theorem 3). Suppose (S0, S1, . . .), S0 = 〈e〉, e ∈ S, is a longest (maybe infinite) sequence of strictly reachable states that
is “part of” cS (∀i ∈ {0, 1, . . .} : ∃S ∈ cS : Si ⊆ S). If this sequence is not a control-flow of e, then by definition the sequence
must be unfinished, i. e., there is a directly reachable state from the sequence’s last state Sl (the sequence must be finite).
Therefore, Sl is part of cS , but each direct reachable state Sl+1 is not. In other words, in Sl is an executable node n, whose
execution leads to Sl+1. This node n, however, is obviously executable in each state S′ ∈ cS , Sl ⊆ S′, and the sequence above
could be extended. But in this case, however, our sequence is not a longest one . I. e., this sequence must be a control-flow.

Proof (Theorem 4). Considering the theorem, there are two independent cases: The join node j blocks in a control-flow of 1)
the start edge entry or 2) the outgoing edge out of j. The theorem claims that the workflow graph WFG is unsound in both
cases.

Case 1): Each control-flow of entry is equal to a computation from the initial state. If it contains a deadlock, then WFG is
unsound by definition. ✓

Case 2): Proof by contradiction: WFG is sound, but j has a deadlock in a state Sdead in a control-flow fout of out.
In Sdead, there are some incoming edges of j with tokens, and there are some incoming edges of j without token. Let
Missing ⊂ ▷j be the set of edges that have no tokens in Sdead∩Missing = ∅. Also Smissing should be states, Smissing ⊆ S(E),
where each computation of these states guarantees at least one token at each edge of Missing (without executing j).
Since WFG is assumed as sound by contradiction, there is a control-flow from the start edge entry, where the edge out of
j gets a token. Let Sout be such a state. Sout consists of the edge out and a multiset Add of edges, Sout = 〈out〉 ∪ Add.
Based on the assumption, the following holds:

〈entry〉 →∗
(
〈out〉 ∪Add

)
→∗

(
Sdead ∪Add

)
=⇒ Add 6= ∅ otherwise: 〈entry〉 →∗ Sdead

Let Add be the set of all sets of edges Add that are (combined with out) reachable from the initial state: Add = {Add ⊆
E : 〈entry〉 →∗ 〈out〉 ∪Add}.
〈entry〉 →∗

(
〈out〉 ∪Add

)
→∗

(
Sdead ∪Add

)
is valid for each Add ∈ Add. If Add 6⊆ Smissing , then the execution of j is

not guaranteed from Sdead ∪Add. WFG can end in a deadlock . Therefore, it must be valid that Add ⊆ Smissing .
In other words, every time out gets a token, it is in a state 〈out〉 ∪ Smissing, Smissing ∈ Smissing. From this state, it is
guaranteed that all edges of Missing get tokens in a subsequent state Ssub, ▷j ⊆ Ssub, 〈out〉 ∪ Smissing →∗ Ssub. Let Ssub
be all such subsequent states Ssub, Ssub = {Ssub ⊆ S(E) : ▷j ⊆ Ssub, 〈out〉 ∪ Smissing →∗ Ssub, Smissing ∈ Smissing}. Since
such a Ssub is reached every time, we depict it with →! for simplification: 〈out〉 ∪ Smissing →! Ssub.
Each time out gets a token, it is in a state 〈out〉 ∪ Smissing, Smissing ∈ Smissing. And: 〈out〉 ∪ Smissing →! Ssub, Ssub ∈ Ssub.
It must hold:

〈entry〉 →∗
(
〈out〉 ∪ Smissing

)
→! Ssub →!

(
〈out〉 ∪ S′

)
, S′ ∈ S(E) =⇒ S′ ∈ Smissing

In other words, in any computation where out gets a token, the computation is infinite:

〈entry〉 →∗
(
〈out〉 ∪ Smissing

)
→! Ssub →!

(
〈out〉 ∪ S′

missing
)
→! S′

sub →
! . . .

Then, however, the execution of WFG never ends in the termination state — WFG is not sound or not fair .

Proof (Theorem 5). We prove both directions ⇐= and =⇒.

⇐= ∀in ∈ ▷j : ∀P ∈ Pentry→in : P ∩↷ (j) 6= ∅ =⇒ ∀fentry ∈ Fentry : j does not have an immediate deadlock in fentry .
This is a constructive proof. There are two complete cases for each control-flow fentry ∈ Fentry in EG(j):
Case 1: fentry does not reach an activation edge of ↷ (j). Since each path to an incoming edge of j has an activation

edge, no token reaches an incoming edge of j (otherwise, the control-flow fentry would pass an activation edge of j).
This means that no token reaches an incoming edge of j, why j does not have an immediate deadlock in fentry . ✓

Case 2: fentry reaches an activation edge of ↷ (j). Therefore, fentry delivers all incoming edges of j with token and no
immediate deadlock is possible at j in fe. ✓

43

=⇒ Proof by contradiction:

∀fentry ∈ Fentry : j does not have an immediate deadlock in fentry

∧ ∃in ∈ ▷j : ∃P ∈ Pentry→in : P ∩↷ (j) = ∅

Let P be a such a path without activation edges of j from entry to an incoming edge in of j. Also, let a ∈ P be the first
edge that is an activation edge of at least one incoming edge of j. There is at least in on that path, which is an activation

edge of itself, then a = in. Remember, a
all

6↷ j. Since the label of all join nodes in the entry graph is Safe, there is no
deadlock in the entry graph. As a consequence of Theorem 1, at least one control-flow fentry can put a token at each edge
of P to a, which successively leads to a state S with a token on a. In each reachable state of S, in which no token can travel
anymore, there is at least one incoming edge of j with a token. But not in all such reachable states all incoming edges of
j have tokens, otherwise a would be an activation edge for all incoming edges; j blocks immediately in these states.

Proof (Theorem 6). This is a constructive proof. Let Pa and Pb be two routes to ι. Theorem 1 states that tokens can traverse
each path from one edge to another edge in a sound workflow graph. In the following proof, we will only consider those
computations where the tokens of fork strictly follow paths Pa and Pb. For this reason, tokens on a and b can travel on Pa and
Pb. But since WFG is sound, they cannot reach ι at the same time. Without loss of generality, there is a computation from the
start edge that executed fork and where a token travelled from a via Pa to ι, but the token of b on Pb could yet have reached
ι. Suppose the former token of b is now at edge e on Pb in a state S. There are two cases:

Case 1 After e, path Pb does not pass a join node that prevents the token from arriving at ι as long as the former token of a is
on it. Regarding Theorem 1, the token can arrive at ι at the same time as the former token of a. There is an abundance.

Case 2 After e, the path Pb passes at least one join node that prevents the token from arriving at ι as long as the former token
of a is on it. Let join ∈ NJoin , join◁ = {out}, out ∈ Pb, be the last join node that hinders the token on Pb as long as
the former token of a is on ι. There are exactly two cases with the former token of a on ι:
Case 2a There is at least one computation from S where the tokens strictly follow Pa and Pb and where join cannot

be executed after the former token of a leaves ι. Since join has the former token of b at one of its incoming
edges and it also cannot be executed before the former token of a leaves ι, there is a deadlock.

Case 2b In all computations from S where the tokens strictly follow Pa and Pb, join can be executed after the former
token of a leaves ι. Since join cannot be executed until the former token of a has left ι, this leaving of ι
must always lead to tokens on a non-empty set of incoming edges of join in all computations. ι must be an
activation edge for at least one incoming edge of join. But ι cannot be an activation edge of join since join
would receive tokens for all its incoming edges, i. e., also for the incoming edge that already carries the former
token of b. ✓

Proof (Theorem 7). The proof is done by contradiction:

There is a route (Pa, Pb) from a and b to ι

where ι is not an activation edge for a real non-empty subset of the incoming edges of any join node on Pa and Pb

src(ι) /∈ NJoin ∧ WFG is sound

Or in other words:

There is a route (Pa, Pb) from a and b to ι

where ι is or is not an activation edge of any incoming edge of any join node on Pa and Pb

src(ι) /∈ NJoin ∧ WFG is sound

Let Pa and Pb be two routes to ι for which the above equation applies. Theorem 1 states that any path can be traversed by
a token in a sound workflow graph. Otherwise, there would be a deadlock. Therefore, in at least one computation starting in
the initial state, a token of fork can arrive at ι via the path Pa without loss of generality. In the following proof, we will only
consider those computations where the tokens of fork follow strictly the paths Pa and Pb. Well, there are two cases:

Case 1 There is at least one computation in which the former token of a remains at ι until the other former token of b reaches
ι via Pb. Since src(ι) /∈ NJoin , an abundance is on ι.

Case 2 There is no computation where the former token of a remains on ι until the other former token of b reaches ι via Pb.
In other words, in each computation (where the tokens strictly follow Pa and Pb), the token via Pa must not remain
on ι until the other token via Pb reaches ι. I. e., in each such computation the former token of a must leave ι before the
former token of b reaches ι via Pb. In fact, there is no node semantics that can force the former token of a at ι to leave
ι before the former token of b reaches ι via Pb. The only way to force the former token of a to leave ι is to require that
the former token of b reaches ι via Pb. And this is again only possible if there is a node on Pb whose execution depends
on a token at ι. The only node that cannot be executed by the token via Pb alone is a join node. I. e., there is a join
node on Pb whose execution depends on a token on ι. Let join be a join node on Pb, {out} = join◁, out ∈ Pb, whose
execution depends on ι. Let the workflow graph be in a state in which the token via Pb lies on the incoming edge in of
join, in ∈ Pb. There are two subcases:
Case 2a ι

all
↷ join. From the former token of a on ι follows in the guarantee at least one token on each incoming edge

of join. Therefore, in of join also gets an additional token. An abundance on in is possible.
Case 2b ∀in ∈ ▷join : ι 6↷ in. If the former token of a leaves ι and since ι does not guarantee a token on any incoming

edge of join, there is at least one reachable state in which at least one incoming edge in’ ∈ ▷join, in’ 6= in, gets
no token. I. e., there is a reachable state in which join is not executed, but has a token on in: a deadlock.

All cases have contradictions. The theorem holds.

44

	-0.9emControl-Flow-Based Methods to Support the Development of Sound Workflows

