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Abstract. Cyber attacks on IT and OT systems can have severe
consequences for individuals and organizations, from water or energy
distribution systems to online banking services. To respond to these
threats, attack simulations can be used to assess the cyber security of
systems to foster a higher degree of resilience against cyber attacks; the
steps taken by an attacker to compromise sensitive system assets can
be traced, and a time estimate can be computed from the initial step
to the compromise of assets of interest.
Previously, the Meta Attack Language (MAL) was introduced as a
framework to develop security-oriented domain-specific languages. It
allows attack simulations on modeled systems and analyzes weaknesses
related to known attacks. To produce more realistic simulation results,
probability distributions can be assigned to attack steps and defenses
to describe the efforts required for attackers to exploit certain attack
steps. However, research on assessing such probability distributions is
scarce, and we often rely on security experts to model attackers’ efforts.
To address this gap, we propose a method to assign probability
distributions to the attack steps and defenses of MAL-based languages.
We demonstrate the proposed method by assigning probability
distributions to a MAL-based language. Finally, the resulting language
is evaluated by modeling and simulating a known cyber attack.
Keywords: Attack Simulations, Threat Modeling, Domain-Specific
Language, Cyber Security, Information Collection.

1 Introduction

Cyber security continues to be a key concern and a fundamental aspect of information
technology (IT) and operational technology (OT) systems [1]. Recent years have witnessed
some of the largest, most sophisticated, and most severe cyber attacks, such as the
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SolarWinds attack1, Florida water supply attack2, and Facebook information leak3, which
affected millions of consumers and thousands of businesses. To conduct attacks against
systems, attackers usually combine multiple vulnerabilities to compromise sensitive system
assets [2] and penetrate the systems with damaging impact [3].

However, assessing the security level of systems is difficult. It is necessary, but challenging
to identify all relevant system assets, their weaknesses in various cyber attacks, and possible
mitigations. To proactively deal with security concerns, threat modeling as a solution for
securing systems can make it more difficult for attackers to accomplish their malicious intent
[4]. This includes holistic identification of the main assets within a system and threats to
these assets. Threat modeling is used to assess the current state of a system and as a
security-by-design tool for developing new systems. A recent improvement is to couple threat
modeling with attack simulations [5], [6]. In such simulations, the steps taken by an attacker
to compromise system assets are traced, and a time estimate is computed from the initial
step to the compromise of assets of interest [2].

The Meta Attack Language (MAL) [2] was proposed as a framework that combines
object-oriented modeling and attack simulations. Because MAL is a meta-language with no
particular domain of interest, it is necessary to create a more concrete language that reflects
the demands of a certain domain. This MAL-based language can then be used to automate
the security analysis of instance models within the respective domain. We have designed
enterpriseLang [7] as a modeling and simulation language for enterprise IT systems. However,
only binary relations between attack steps and defenses were implemented, assuming that an
attack step can be reached by an attacker instantly or cannot be reached because there is a
defense in place. This is in contrast to real-world attack scenarios, in which many attack steps
require a certain effort to be compromised, and defenses cannot achieve a 100% opportunity
to block certain attacks.

To provide more realistic simulation results, some MAL-based languages (e.g., [8]) defined
probability distributions on a few attack steps and defenses to express the attackers’ efforts
needed to exploit certain attack steps. Unfortunately, most of them lack a systematic
approach to assign probability distributions to more than a few random steps, which would
be needed for a robust and complete language. To bridge this gap, we propose a method
for assigning probability distributions to attack steps and defenses of MAL-based languages
(and potentially also useful for other attack-graph-based approaches). This will yield more
realistic simulation results that can help stakeholders to investigate security settings, which,
in turn, could be implemented to secure a system more effectively. Finally, we demonstrate
our proposed approach by enriching enterpriseLang [7] with such probability distributions.

The remainder of this article is structured as follows. In Section 2, we review the current
state-of-the-art. In Section 3, we present the background of this study. Section 4 presents the
design methodology of our method. Section 5 describes the method in detail. In Section 6, we
demonstrate the proposed method by assigning probability distributions to enterpriseLang.
In Section 7, we present the first evaluation of the designed method. The results are discussed
in Section 8, and finally, the article is concluded in Section 9.

2 Related Work

Our work relates to three domains of related work: model-driven security engineering,
attack/defense graphs, and architecture modeling for system analysis.
1 https://www.cnet.com/news/solarwinds-hack-officially-blamed-on-russia-what-you-need-to-

know/
2 https://www.industrialdefender.com/florida-water-treatment-plant-cyber-attack/
3 https://www.cbsnews.com/news/millions-facebook-user-records-exposed-amazon-cloud-server/
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The field of model-driven security engineering includes a large number of domain-specific
languages. A well-known initiative for modeling from a system-wide perspective is UMLsec
[9], which is an extension of the unified modeling language for developing security-critical
systems. Cardenas et al. [10] provided a holistic view of the security requirements and threat
models of sensor networks, focusing on high-level security goals. In these languages, it is
possible to specify a system design in terms of components and their interactions, as well as
security properties such as constraints, requirements, or threats.

Many model-driven approaches are based on attack trees. The concept of attack trees is
commonly attributed to Bruce Schneier [11], [12]. Formal foundations of attack trees were laid
by Mauw and Oostdijk [13], and the framework was further extended to include defenses
by Kordy et al. [14]. Since then, many attack-graph-based methods (e.g., [15], [16], [17],
[18]) have been presented. These theoretical descriptions led to the development of different
tools using attack graphs, and these are mostly based on collecting information on existing
systems and automatically creating attack graphs. For instance, MulVal [19] derived logical
attack graphs by associating the vulnerabilities extracted from scans with a probability
that expresses how likely an attacker is to exploit them successfully. k-Zero Day Safety [20]
extended MulVAL to compute zero-day attack graphs. The TVA tool [21] modeled networks
in terms of security conditions and used an information base of exploits as transitions between
these security conditions. Similarly, NetSecuritas [22] composed scanner output and known
exploits to generate attack graphs and corresponding security recommendations. In [23],
a prototype was proposed for generating attack graphs from MITRE ATT&CK for ICS
(industrial control system)4 automatically for adversary behavior execution.

These attack graphs can be extended to probabilistic attack graphs. For instance,
Frigault et al. [24] used the TVA-tool to generate attack graphs and transformed them
into dynamic Bayesian networks. They also enriched them with probabilities using the
common vulnerability scoring system (CVSS) scores5. Similarly, Wang et al. [25] proposed an
attack-graph-based probabilistic metric for network security by combining the measurements
of individual vulnerabilities obtained from existing metrics into an overall score of the
network, where individual scores can be obtained by converting vulnerability scores provided
by existing standards, e.g., CVSS scores to probabilities.

Architecture modeling can aid system analysis and help handling the increasing complexity
of IT landscapes [26], [27]. The importance of creating models to support decision-making
has previously been addressed in some studies. For instance, Lagerström et al. [28], [29]
presented instantiated architectural models based on a metamodel for modifiability analysis
of enterprise systems to support decision-making, where probabilistic relational models
were used to combine regular entity-relationship modeling aspects to perform enterprise
architecture analysis under uncertainty.

Previous work, including CySeMoL [30], P2CySeMoL [6], and pwnPr3d [31], also
employed architectural modeling, in which attacks and defenses were coupled to objects
of system architectures and were probabilistically related by Bayesian networks. Their
design essentially involved creating its qualitative structure (assets, attacks, defenses, and
associations) and populating the qualitative structure with quantitative data (how likely
different attacks are to succeed, given the presence or absence of different defenses).
However, these approaches did not follow an explicit meta language, making them difficult
to change and re-use [2]. Therefore, MAL was proposed to create MAL-based languages.
Till date, several MAL-based languages have been proposed, such as enterpriseLang [7] for
modeling cyber attacks on enterprise IT systems, powerLang [8] for power-related IT and
OT infrastructures, and coreLang [32] for common IT infrastructures.
4 https://collaborate.mitre.org/attackics/
5 https://www.first.org/cvss/
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3 Background

3.1 Introduction to MAL

MAL is a modeling and simulation language framework that combines probabilistic attack
and defense graphs with object-oriented modeling, which represents no particular domain
of interest and can be used to create domain-specific languages (DSLs). A MAL-based DSL
defines what information is required and specifies the generic attack logic of a domain under
study. We refer to the original paper [2] for a detailed overview of MAL.

To create a MAL-based DSL, the first step is to identify all the relevant assets within a
particular domain. Each asset contains multiple attack steps that represent actual attacks
or threats to the asset. In addition, one successfully compromised attack step can lead to
(represented by “–>”) the next attack step, where each attack step is of type OR (represented
by “|”) or AND (represented by “&”). OR indicates that an attacker can start working on
this attack step as soon as one of its parent attack steps is compromised, whereas AND
indicates that all its parent attack steps are compromised for an attacker to reach this step.
An asset may also feature defenses (represented by “#”). The sum of the attack paths
is the attack/defense graph used for the attack simulation. Further, to model the possible
transitions of an attacker among different assets, we connect the related ones by associations.
Finally, assets can inherit from each other, meaning that an inherited asset inherits all attack
steps and defenses of its parent asset.

In real-world attack scenarios, some attack steps can be compromised immediately,
whereas most attack steps require a certain effort to be compromised, expressed by time, i.e.,
time to compromise (TTC) [2], [6]. The TTC value measures the security level of various
assets in a modeled system in terms of attack resilience; the larger the value, the more
resilient the system is against cyber attacks. Therefore, attack steps can be associated with
a probability distribution that describes the effort required to perform each step. With
binary relations implemented in a MAL-based language, each defense has a Boolean value
to indicate their status, where “enabled” or “disabled” is represented by setting the defense
value to True or False. For instance, if the defense has a value True, then its connected
attack steps are not performed. With probabilistic relations, when we assign a probability
distribution to a defense, it describes the probability that the defense is successful.

3.2 A MAL-based Language for Enterprise Systems

Based on the MAL framework, a MAL-based language for modeling enterprise IT systems,
called enterpriseLang, was designed [7]. To design such a language, the information regarding
the system assets (e.g., computer, service, OS, firewall, and internal and external networks),
attack steps (e.g., spearphishing attachment, brute force, and automated exfiltration),
and defenses (e.g., privileged account management, execution prevention, and network
segmentation) were extracted from the MITRE Enterprise ATT&CK Matrix6 and then
converted and combined into enterpriseLang. The enterpriseLang metamodel, containing
enterprise assets and associations, is shown in Figure 1.

In total, enterpriseLang contains 12 assets and 10 inherited assets. We organize all the
assets into five categories: Person, Account, Software, Hardware, and Network.

The Person category includes one asset—User—and reflects the human aspect of cyber
security.

The Account category includes two assets: UserAccount and AdminAccount. A User
can log in to an AdminAccount or a UserAccount. By logging to an AdminAccount, one
can change the security settings, install software, and access files on a Computer. The
6 https://attack.mitre.org/
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AdminAccount has two inherited assets, WindowsAdmin (for Windows) and Root (for Linux
and macOS), depending on the operating system (OS) running on a certain Computer.
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Figure 1. EnterpriseLang metamodel containing assets and associations

The Software category includes three assets: OS, Service, and Browser. When OSs
boot up, they can run programs or applications called Services to perform functions. One
commonly accessed Service is Browser. In addition, OS has three inherited assets: Windows,
Linux, and macOS, which represent the most commonly used operating systems. Further,
Service has two inherited assets: CloudService and ThirdpartySoftware.

The Network category contains four assets: InternalNetwork, ExternalNetwork, Router,
and Firewall, where a Firewall is connected to a Router asset and provides firewall rules
to allow certain network activities.

The Hardware category contains two assets: Computer and PeripheralDevice. The
Computer asset represents office PCs. Furthermore, PeripheralDevice has three inherited
assets: Microphone, RemovableMedia (e.g., USB), and Webcam.
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* * * 1
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Figure 2. Graphical representation of attack steps and defenses relations

The attack steps and defenses are related to each other. In Figure 2, the
red arrows represent the possible attack path that attackers can take to achieve
their goals. First, attackers send spearphishing emails containing malicious links (i.e.,
spearphishingLink7), leveraging userExecution8. Users clicking on the links can lead to
the exploitation of a service vulnerability via exploitationForClientExecution9. Defenses
7 https://attack.mitre.org/techniques/T1566/002/
8 https://attack.mitre.org/techniques/T1204/001/
9 https://attack.mitre.org/techniques/T1203/
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can be implemented to prevent certain attack steps, as represented by the blue arrows.
In this example, restrictWebBasedContent10 can be implemented to defend against
the spearphishingLink attack, userTraining11 can be performed as a way to raise
awareness on common spearphishing techniques and prevent the userExecution, and
exploitProtection12 can be indicative of software exploitation occurring and defend against
the exploitationForClientExecution attack.

In the code base of enterpriseLang, the aforementioned example is written as follows:
category Person {

asset User {
& userExecution

-> computer.os.service.exploitationForClientExecution
# userTraining

-> userExecution
}

}
category Software {

asset Browser {
& spearphishingLink

-> service.os.computer.user.userExecution
# restrictWebBasedContent

-> spearphishingLink
}
asset Service {

& exploitationForClientExecution
-> ...

# exploitProtection
-> exploitationForClientExecution

}
asset OS {
...
}

}
category Hardware {

asset Computer {
...
}

}
associations {

Browser [browser] * <--Accesses--> * [service] Service
OS [os] 1 <--Runs--> * [service] Service
Computer [computer] 1 <--Operates--> * [os] OS
User [user] * <--Uses--> * [computer] Computer

}

However, enterpriseLang only applied binary relations between different attack steps and
defenses. In this case, all the accessible attack steps for an attacker can be compromised
without any effort, and the defenses only have values True or False. In the aforementioned
example, if the exploitProtection is implemented and enabled (i.e., set to value True), its
connected attack step exploitationForClientExecution will be blocked. This is not realistic
because security applications and antivirus software are not always up-to-date and cannot
stop these attacks completely [33].

An example of the relations between attack steps is shown in Figure 3. With
binary relations, when the spearphishingLink attack on the Browser is completed, the
attack step, userExecution, can be reached immediately. If information sources [34],
[35] state that exploitationForClientExecution can be performed within one day with a
probability of 71.2%, we could assign a Bernoulli(0.712)*Exponential(1) distribution on the
10 https://attack.mitre.org/mitigations/M1021/
11 https://attack.mitre.org/mitigations/M1017/
12 https://attack.mitre.org/mitigations/M1050/
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exploitationForClientExecution step. Therefore, when the userExecution step is reached, the
effort it requires for an attacker to perform the exploitationForClientExecution attack follows
a Bernoulli(0.712)*Exponential(1) distribution. When conducting attack simulations, the
local time to compromise (i.e., local TTC) of exploitationForClientExecution is sampled from
its assigned probability distribution, describing the expected time required to perform the
exploitationForClientExecution step, and thus can produce more realistic simulation results.

User

& userExecution

Service

& exploitationForClientExecution

Browser

& spearphishingLink

User.userExecution:
True

User.userExecution:
False

Browser.spearphishingLink:
True 1 0

Browser.spearphishingLink:
False 0 1

Service.exploitationForClientExecution:
True

Service.exploitationForClientExecution:
False

User.userExecution:
True Bernoulli(0.712)*Exponential(1) 1-Bernoulli(0.712)*Exponential(1)

User.userExecution:
False 1-Bernoulli(0.712)*Exponential(1) Bernoulli(0.712)*Exponential(1)

Figure 3. Example of binary and probabilistic relations between attack steps

A common issue for MAL-based languages is that only a few attack steps and defenses
have probability distributions assigned that describe the efforts required for an attacker to
compromise a certain attack step and the probability that a defense is effective. Therefore,
it is essential to define probability distributions for most attack steps and defenses of
MAL-based languages to provide more realistic simulation results for their system model
instances. However, studies on assessing such probability distributions are scarce, and we
often rely on security experts to model them [8].

4 Design Methodology
Design science research (DSR) is a widely applied and accepted means of developing artifacts
in information systems research. It offers a systematic structure for developing artifacts,
such as constructs, models, methods, or instances [36]. Thus, the application of DSR is
appropriate here as it guides the development of our method. In this work, our method is
designed according to the DSR guidelines of Peffers et al. [37], which include six steps:
• Step 1: Identify Problem & Motivate:

To respond to threats on IT and OT systems, attack simulations can be used to assess
the cyber security of systems to foster a higher degree of resilience against cyber attacks.
Previously, MAL was introduced as a framework to develop security-oriented MAL-based
DSLs, which allows attack simulations on modeled systems and analyzes weaknesses
related to known attacks. To produce more realistic simulation results, probability
distributions can be assigned to attack steps and defenses to describe the efforts required
for attackers to exploit certain attack steps, while research on assessing such probability
distributions is scarce.
• Step 2: Define Objectives:

To produce more realistic simulation results, a method to assign probability distributions
to the attack steps and defenses is needed for a robust and complete MAL-based DSL.
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• Step 3: Design & Development:
We situate our method to the risk and impact analysis stage of the Process for Attack
Simulation and Threat Analysis (PASTA) process [38], which is presented in Figure 4.
First, we collect information from different sources for the domain under assessment.
Because the sources are of various types and include qualitative studies, we assess
their quality by credibility assessment. We then interpret and convert information into
probability distributions that can be applied to MAL-based languages.
• Step 4 & 5: Demonstration & Evaluation:

We demonstrate the designed method by assigning probability distributions to
enterpriseLang (cf. Section 6). The updated language is evaluated by comparing the
simulation results using two different versions of it (i.e., binary relations and probability
distributions) using a documented known cyber attack (cf. Section 7).
• Step 6: Communication:

The research is communicated by the publication of this article. Also, MAL is an
open-source project that is publicly available from the GitHub repository13.

5 Method for Assigning Probability Distributions

As mentioned earlier, it is a common issue for MAL-based languages to have only a few
attack steps and defenses with probability distributions (e.g., [8], [39]). Therefore, we propose
a method that guides future developers to find such probabilities and assign them to
MAL-based languages. However, our method is situated in a bigger picture of the entire
threat modeling process. Because our method provides essential input for the risk and impact
analysis in the form of the effort an attacker needs to spend on a certain attack step, and
using our method could produce quantitative simulation results that are similar to the output
of risk and impact analysis (i.e., quantitative risk analysis), it is reasonable to fit it into the
PASTA [38].

PASTA process

The designed method

MAL-based
languages 

Languages with
probability

distributions

Simulation tool

Stakeholders can get more
accurate security assessment

MAL-based languages development process

Define
objectives

Vulnerability/
Weakness
mapping

Application
decomposition

Define
technical

scope

Threat
analysis

Attack
modeling

Risk and
impact

analysis

Collect
information

Process 1

Identify assets
Identify

mitigations to
threats

Identify
threats to

assets

Create
metamodel

Evaluate
information

sources

Process 2
Interpret and

convert
information

Process 3

Figure 4. Overview process for attack simulation and threat (PASTA) analysis

PASTA is a seven-stage methodology that addresses the most viable threats to an
application or system environment target. The inputs/outputs of the PASTA process include
people, information sources, and artifacts to be created. Figure 4 shows the typical activities
13 https://github.com/mal-lang/

62

https://github.com/mal-lang/


of creating a MAL-based language within the first six stages of the PASTA process. For
instance, the application decomposition action in PASTA is related to identifying assets
in the development of MAL-based languages. However, in language development, we focus
on the identification of reusable concepts, such as a Mac OS, while PASTA takes a step
further and identifies concrete systems (e.g., Mac Big Sur 11.2.3) that realize these concepts.
Thus, we recommend performing at least two iterations of the PASTA process when using
MAL-based languages. In the first iteration, MAL-based languages are created or aligned
with the needs of the organization. In the second iteration, MAL-based languages are used
to create a concrete instance representing the organization.

However, the method presented here assumes that the activities mentioned above have
already been performed and thus focuses on the identification of probability distributions,
which should be attached to the identified attack steps. This directly relates to the risk and
impact analysis stage of PASTA, as we perform a deeper analysis of the potential attack
vectors and identify concrete efforts that a possible attacker needs to spend.

Our method is composed of three sub-processes: 1) collecting information for the domain
in which the MAL-based language takes place, 2) evaluating the sources through credibility
assessment, and 3) interpreting and converting information into probability distributions.
By applying this method to MAL-based languages and conducting attack simulations, the
MAL-based languages can provide more realistic simulation results of their system model
instances. Therefore, stakeholders can assess the security of the system and investigate the
security settings that can be implemented to secure the system more effectively.

5.1 Collect Information for Domain under Assessment

To collect information as input for the process, different sources are possible, such as
performing systematic literature reviews (SLRs) (e.g., [40], [41]), interviewing experts [39],
conducting studies [42], or making an estimation based on existing sources [43]. Considering
SLRs, we expand their scope (see Figure 5) to include not only traditional academic
publishing, such as journal papers and conference proceedings, but also online platforms
such as security events (e.g., blackhat14), vulnerability databases (e.g., NVD15), blogs, and
technical reports, since, oftentimes, the recent cyber threats are publicly disclosed online [44].

Use attack steps/defenses
as keywords in the SLR

Select information sources 
from the SLR results by

inclusion criteria 

Merge information sources
of the same keyword

Classify information
sources by source type and

time proximity

Figure 5. Overview of the information collection process

The information collection process based on SLRs includes four steps, as shown in Figure 5,
and each step is detailed as follows:

1. For each MAL-based language, the list of system asset-related attack steps and defenses
from the language as keywords is used to perform an SLR.

2. Information sources are selected by the following inclusion criteria:
• The information source must focus on cyber security.
• The information source must concentrate on the domain in which the MAL-based

language takes place.
14 https://www.blackhat.com/
15 https://nvd.nist.gov/
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• The information source must contain information describing the effort required (e.g.,
the time required, success probability) for an attacker to compromise one or more
attack steps.

3. Information sources of the same keyword are merged for further analysis. The information
sources collected for the same keyword contain quantitative information about the time
required for an attacker to perform an attack step and/or the uncertainties of performing
an attack step successfully.

4. All the collected information sources are stored with the metamodel shown in Figure 6.
For each information source, we store its source link and classify the source by its source
type (ST) and time proximity (TP). After all the collected sources are classified, they are
prepared for further evaluation.

Source link Source type Time proximity

ExtendsExtendsExtends

Contains Information source1 *Keyword

Figure 6. Metamodel of the collected information sources

5.2 Evaluate Information Sources by Credibility Assessment

Because the collected information sources are of various types and include qualitative studies,
it is necessary to assess their quality [40]. During this process, we apply a set of credibility
assessment heuristics [45] to evaluate the credibility of each information source, including
ST and TP. They are presented in the form of these causal rules: “The more persistent the
memory, the higher the credibility of the source” and “The shorter the time since the source
was published, the higher the credibility of the source.”

Then, we parameterize the applied individual heuristics, where a higher value on a heuristic
represents a higher credibility of that type of source. We calculate the estimated credibility
value for each information source by combining the parameterized heuristics and the overall
credibility value Csource for a source can be calculated using the fundamental probability
calculations:

Csource = 1− (1− P (ST ))(1− P (TP )) (1)
where ST and TP represent the applied heuristics and the probability values P (ST ) and
P (TP ) denote the parameterized heuristic values.

For instance, if a source is classified as Database by ST and Less than 1 year by TP, then
we estimate its credibility as Csource = 1 - (1 - P(ST = Database))(1 - P(TP = Less than 1
year))16.

5.3 Interpret and Convert Information into Probability Distributions

An overview of the process of interpreting and transforming information into probability
distributions is shown in Figure 7. For each keyword, we analyze the quantitative information
contained in the collected information sources source1, ..., sourcem+n, and classify them
into 1) the time needed (t) to perform the attack step sourcet,1, ..., sourcet,m, and 2)
the success probability of performing the attack step or the defense is implemented as
sources,1, ..., sources,n.
16 For concrete values, refer to Section 6.2 and Table 1.
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Figure 7. Overview of the interpreting and transforming information to probability distributions
process
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For sourcet,1, ..., sourcet,m, we convert each of them into a certain probability distribution
Φt,1, ..., Φt,m with parameters, specifying that the time it takes to perform the attack follows
a certain probability distribution. Defined by the MAL framework17, available distribution
functions that express the time needed include exponential, gamma, uniform, log-normal,
and truncated normal distributions. For instance, if a sourcet,1 indicates the time required
to perform an attack step compromise is 1/λ days, then we express it with an exponential
distribution with parameter λ, i.e., Φt,1 = Exponential(λ).

Next, we calculate the credibility weighted Φt of the above sources. For i sources that are
expressed by the same distribution function, we calculate the credibility weighted parameter
θ of their distribution functions:

θ =

i∑
source=1

Csource ∗ θsource

i∑
source=1

Csource

(2)

where θsource is the parameter of its corresponding distribution derived from each source.
Thus, the resulting aggregated probability distribution Φt describing the time required is

expressed by

Φt(θ) = (
m1∑

source=1
Ct,source ∗ Exponential(λ) +

m2∑
source=1

Ct,source ∗Gamma(a, b)+

m3∑
source=1

Ct,source ∗ Uniform(min,max) +
m4∑

source=1
Ct,source ∗ LogNormal(µ, σ)+

m5∑
source=1

Ct,source ∗ TruncatedNormal(µ, σ))/
m∑

source=1
Ct,source

(3)

where m1, ...,m5 are the number of sources that correspond to a specific distribution
function, and m is their sum.

Similarly, for sources,1, ..., sources,n, we convert the quantitative information into
probability distributions Φs,1, ..., Φs,n with parameters. Defined by the MAL framework,
available distribution functions that can express the uncertainties include Bernoulli,
binomial, and Pareto distributions. For instance, if a sources,1 indicates that an attack step
compromise can be performed immediately with a probability of p, then we express it with
a probability distribution Φt,1=Bernoulli(p).

Then, we calculate the credibility weighted parameter θ of the distribution function
according to Equation (2) and the aggregated probability distribution Φs(θ) describing the
uncertainties of performing an attack step or a defense is implemented as follows:

Φs(θ) = (
n1∑

source=1
Cs,source ∗Bernoulli(p) +

n2∑
source=1

Cs,source ∗Binomial(n, p)+

n3∑
source=1

Cs,source ∗ Pareto(m,α))/
n∑

source=1
Cs,source

(4)

where n1, ..., n3 are the number of sources that correspond to a specific distribution function,
and n is their sum.

Therefore, the probability distribution Φ is associated with the keyword by applying
multiplication Φ = Φt ∗ Φs, specifying the time required and uncertainties in performing
it. In addition, if we have either Φt or Φs (i.e., no information sources are collected for the
17 https://github.com/mal-lang/malcompiler/wiki/Supported-distribution-functions
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uncertainties or the time needed), we assume the other is equal to 1, so that Φ = Φt or
Φ = Φs.

By following the above processes, we can assign probability distributions to the
corresponding attack steps and defenses needed for a MAL-based language.

6 Demonstration

In this section, we demonstrate the proposed method by assigning probability distributions
to enterpriseLang.

6.1 Collect Information for Enterprise Systems

To collect information sources for enterprise systems, the existing attack steps and defenses in
enterpriseLang were used as keywords to perform an SLR. In total, 266 unique attack steps
and 41 defences were used as keywords for our SLR. We searched for these keywords on
Google Scholar18 and expanded our search on Google19 to include online platform resources.
We assessed all relevant information sources and based on the given inclusion criteria (cf.
Section 5.1), 120 unique information sources were selected for further analysis.

The collected 120 information sources contain information needed for 198 attack steps
and 12 defenses. Then, we merged the information sources of the same keyword (i.e., attack
step and defense) in one markdown file for further interpretation. A list of all the markdown
files is available on Github20.

Next, we stored the collected information sources (cf. Figure 8) and classified the
information sources according to their ST and TP for further credibility assessment.
According to the ST, the collected sources were classified into online platforms and traditional
academic publishing, where the plurality (82.5%) of the information sources are online
platforms, which include Blogs, Reports, Net stats, Analyst papers, Surveys, and Databases.
Only 17.5% of the sources are collected from traditional publishing, including Journal papers,
Conference papers, Books, and Student theses. According to the TP, we classified the collected
sources into Less than 1 year, 1 to 5 years, and More than 5 years. Overall, the classification
of all collected information sources is shown in Figure 9.

Figure 8. Screenshot of the collected information sources

18 https://scholar.google.com/
19 https://www.google.com/
20 https://github.com/mal-lang/enterpriseLang/tree/master/enterpriselang%20probabilities

67

https://scholar.google.com/
https://www.google.com/
https://github.com/mal-lang/enterpriseLang/tree/master/enterpriselang%20probabilities


In
fo

rm
at

io
n 

So
ur

ce
s (

12
0)

B
lo

gs
47

.5
0%

R
ep

or
ts

26
.6

7%
Jo

ur
na

l p
ap

er
s

8.
33

%
C

on
fe

re
nc

e 
pa

pe
rs

6.
67

%
St

ud
en

t t
he

se
s

0.
83

%
N

et
 st

at
s

3.
33

%
A

na
ly

st
 p

ap
er

s
2.

50
%

Su
rv

ey
s

1.
67

%
B

oo
ks

1.
67

%
D

at
ab

as
es

0.
83

%

< 1 year 0%

1-5 years 2.50%

> 5 years 5.83%

< 1 year 10.83%

1-5 years 33.33%

> 5 years 3.33%

< 1 year 9.17%

1-5 years 16.67%

> 5 years 0.83%

< 1 year 0%

1-5 years 2.50%

> 5 years 4.17%

< 1 year 2.50%

1-5 years 0.83%

> 5 years 0%

< 1 year 1.67%

1-5 years 0.83%

> 5 years 0%

< 1 year 0%

1-5 years 0.83%

> 5 years 0.83%

< 1 year 0%

1-5 years 1.67%

> 5 years 0%

< 1 year 0.83%

1-5 years 0%

> 5 years 0%

< 1 year 0%

1-5 years 0.83%

> 5 years 0%

O
nl

in
e 

pl
at

fo
rm

s
82

.5
0%

Tr
ad

iti
on

al
 a

ca
de

m
ic

 p
ub

lis
hi

ng
17

.5
0%

Figure 9. Classification of the collected information sources

68



6.2 Evaluate Information Sources by Credibility Assessment

The collected information sources are of various types, and thus, of various quality. During
this process, we evaluated the credibility of each source by applying parameterized heuristics.
We set the probability values for the individual heuristics (e.g., P(ST = Blogs)), ranging
from 0% to 100%, where a higher probability value on a heuristic equals a higher credibility
of that type of source. The overall parameterized heuristics applied in this study are listed
in Table 1.

If a source collected for a keyword is classified as Blogs by ST and Less than 1 year by
TP, then we applied their parameterized heuristic values P(ST = Blogs) and P(TP = Less
than 1 year) from Table 1. Next, we calculated the overall credibility Csource according to
Equation (1). For instance, the source [46] was collected for the keyword resourceHijacking
and was classified into Analyst papers and Less than 1 year. Therefore, we estimated the
overall credibility of the source Csource = 1 - (1 - P(ST = Analyst papers))(1 - P(TP = Less
than 1 year)) = 1 - (1 - 0.6)(1 - 0.75) = 90%.

Table 1. Parameterized heuristics applied in this work

Heuristics Var Parameters Probability Values

Source Type ST

P(ST = Books)
P(ST = Journal papers)
P(ST = Conference papers)
P(ST = Student theses)
P(ST = Reports)
P(ST = Surveys)
P(ST = Analyst papers)
P(ST = Databases)
P(ST = Net stats)
P(ST = Blogs)

90%
85%
80%
75%
70%
65%
60%
55%
40%
20%

Time Proximity TP
P(TP = Less than 1 year)
P(TP = 1 to 5 years)
P(TP = More than 5 years)

75%
50%
25%

6.3 Interpret and Convert Information into Probability Distributions

During the process, we analyzed all the quantitative information collected for each keyword
in its markdown file.

For instance, three sources [47], [48], [49] were collected for the keyword processInjection.
First, we analyzed the quantitative information of the sources. Two of them were classified
into the time required to perform the attack step, where sourcet,1 [47] states that it
takes an attacker 11 min to trigger a process injection, and sourcet,2 [48] states that
the process injection can be triggered in three min. However, [49] was classified into the
success probability of compromising the step (i.e., sources,1) because it states that 35% of
organizations are affected by process injection.

During the previous process (cf. Section 6.2), sourcet,1 was classified as Blogs by ST and
1 to 5 years by TP. Therefore, we calculated its credibility value according to Equation (1)
and Table 1, i.e., Ct,1 = 60%. Similarly, we calculated that the credibility value of sourcet,2
is Ct,2 = 60%, and sources,1 is Cs,1 = 80%.

According to the MAL framework, both sourcet,1 and sourcet,2 were expressed with an
exponential distribution function. According to Equation (2), we calculated θ = 205.7. Then,
we calculated that Φt = Exponential(205.7) according to Equation (3).
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Similarly, sources,1 was expressed by the Bernoulli distribution function. Because it was
the only source collected for the success probability, we calculated Φs = Bernoulli(0.35)
according to Equations (2) and (4), meaning that it can be performed immediately with a
probability of 35%, and not at all with a probability of 65%.

By applying multiplication, we assigned Φ = Exponential(205.7) * Bernoulli(0.35) to the
processInjection attack step. Therefore, in the code base of enterpriseLang, we assigned the
probability distribution to the related attack steps and defenses as follows:

asset OS {
& processInjection [Exponential(205.7) * Bernoulli(0.35)]

-> threadExecutionHijacking,
...

| threadExecutionHijacking

# behaviorPreventionOnEndpoint
-> processInjection,

...
}

7 First Evaluation

In this section, we evaluated the designed method for simulating known cyber attacks
on system model instances using two different versions of enterpriseLang. Therefore,
we conducted attack simulations and compared the simulation results provided by
enterpriseLang against binary relations and probability distributions by following the
designed method to determine whether the latter could provide a more realistic security
assessment by comparing the simulation results to a documented attack.

According to a security alert21, attackers are increasingly using password spraying as a
brute force against organizations around the world. These attacks can have severe impacts
on networked systems, including the loss of sensitive information and disruption to regular
operations. We illustrate this example in the following.

Figure 10. Simplified system model

Figure 10 shows the simplified system model created with enterpriseLang to simulate
the behavior of the attackers, where each asset (e.g., OS-Windows) contains multiple
attack steps (e.g., passwordSpraying) and defenses (e.g., multiFactorAuthentication) that
are connected. The attackers first performed online research (i.e., GoogleSearch) and sent
spearphishing messages to target organizations and user accounts (e.g., UserAccount1).
Then, they used a sub-technique of bruteForce known as passwordSpraying against these
accounts to gain userCredentials. By leveraging the userCredentials, the attackers performed
21 https://us-cert.cisa.gov/ncas/alerts/TA18-086A
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an emailCollection from the UserAccount1 and a larger passwordSpraying against them.
The attackers then attempted to expand laterally through remoteDesktopProtocol within
the OfficeNetwork, and performed mass dataExfiltration using fileTransferProtocols. A
successful compromised system can have severe impacts, including temporary or permanent
loss of sensitive or proprietary information, and financial losses incurred to restore systems
and files.

Given the system model (cf. Figure 10), we performed attack simulations in a simulation
tool called securiCAD [5], which transforms MAL-based languages into attack graphs. We
specified the entry point of the attack as spearphishingViaService. Figure 11 shows one of the
shortest attack paths that results in dataExfiltration from the simulation results, where each
node represents an attack step reachable by attackers and green circles represent possible
defenses that can be implemented by stakeholders within the system to prevent certain attack
steps.

Figure 11. Attack path to perform data exfiltration

Here, we compare the simulation results provided by enterpriseLang with binary relations
to the version with probability distributions by calculating the global time to compromise
(i.e., global TTC) of userRights. According to the MAL framework [2], rational attackers
would select the shortest path to reach various attack steps. Therefore, the global TTC
of userRights is the shortest time required for attackers to reach userRights by attempting
various avaliable attack steps and compromising individual attack steps from the entry point
spearphishingViaService (see Figure 11). The comparison results are shown in Figure 12.

(a) enterpriseLang with binary relations (b) enterpriseLang with distributions

Figure 12. Simulation results comparison of the global TTC to compromise a certain attack step

As shown in Figure 12(a), when we use enterpriseLang with binary relations, the
global TTC of compromising userRights has a maximum success rate of 0% when
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multiFactorAuthentication is enabled. When we use enterpriseLang with probability
distributions (cf. Figure 12(b)), the global TTC of compromising userRights has a maximum
success rate of 29% when multiFactorAuthentication is enabled, and the attack step can be
reached within 26 days.

While it is difficult to verify the global TTC value with real-world attacks following
the same attack sequence, the source22 identified that 29% of users submitted their
credentials after clicking the spearphishing link, which is the same as the result produced
by enterpriseLang with distributions (cf. Figure 12(b)). Therefore, enterpriseLang with
probability distributions could provide more realistic global TTC values than with binary
relations, where an attack is either always and immediately effective or cannot be performed
at all.

8 Discussion

In this article, we proposed a method to assign probability distributions to attack steps
and defenses for MAL-based languages. We further applied the method to assign probability
distributions for a MAL-based language called enterpriseLang, where the MITRE ATT&CK
Matrix has been transformed into an attack/defense graph with probabilities of the relations.
Although our approach produces more realistic simulation results than previous approaches,
our method has some limitations.

First, we solely considered the literature sources in our demonstration for setting our
probabilities. The advantage of relying on existing literature is that this information can
be collected relatively easily and it is traceable. The downside is that some sources could
be outdated. To address this issue, we emphasize more recent literature by considering the
publication date. However, there are still other sources that could be considered, such as
vulnerability scores and databases, vulnerability scanners, expert knowledge, logs and alerts,
and system state information [50]. Considering additional sources can increase the accuracy of
the simulation results, but it comes with more effort (e.g., conducting several interviews with
experts), or will create organization-specific outcomes (e.g., using scanners). In particular,
the latter is not generalizable to the language level.

Second, the quantitative information collected that describes the efforts needed for
attackers to exploit certain attack steps can be diverse. At the moment, we compute a
weighted average based on a calculated score that represents the trustworthiness of the
different sources. A common problem with average calculations is that extreme values distort
the result and, hence, may produce unrealistic simulation results in our case. Such extreme
values might be compensated by a large number of values. Unfortunately, our probabilities
are usually determined by three sources on average, and thus, our simulation results might
be influenced by extreme values. To balance this, the consideration of further information
sources can be helpful, e.g., an expert can help to decide on the value.

Further, the parameterized probability values shown in Table 1 were set without any
further research. Thus, changing these parameters will lead to other simulation results.
However, this does not harm our approach per se, since our demonstration was successful,
and our first evaluation showed that the simulation results could be improved even
without perfect parameterization. Nonetheless, future efforts should be made to find better
parameterizations, leading to more realistic simulation results.

Finally, the method was designed and tested by one team of MAL language developers and
reviewed by two other MAL language developers. The main feedback received was considering
the applicability of the method in other domains, e.g., industrial control systems, where
22 https://www.prnewswire.com/news-releases/cyber-security-report-reveals-factors-that-

contribute-to-high-click-rates-and-high-risk-of-credential-theft-300995105.html
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there are fewer published sources available. This is mainly due to confidentiality in critical
infrastructure. The proposed method can be extended to other types of sources that are more
suitable for a certain domain. When including expert opinions, the suggested determination
of probability values can still be used (with modifications).

9 Conclusion

In this article, we propose a method to assign probability distributions to attack steps
and defenses for MAL-based DSLs. The proposed method fits into the PASTA process and
contains three sub-processes. We demonstrated the proposed method by assigning probability
distributions to a MAL-based DSL called enterpriseLang. By conducting attack simulations
on a system model instance using two different versions (i.e., binary relations and probability
distributions) of enterpriseLang, the one with probability distributions shows more realistic
simulation results than the one with binary relations. Therefore, stakeholders can assess the
security of the system and investigate the security settings that can be implemented to secure
the system more effectively.

However, there is still some work that needs to be done. First, we solely considered
literature-based sources for our probabilities, and other information sources could also be
included so that the missing probabilities for attack steps and defenses can be added and the
existing ones can potentially be revised and updated. Second, the quantitative information
collected that describes the efforts needed for attackers to exploit certain attack steps can be
very diverse (i.e., far from each other); thus, further information sources should be included
to become more certain about the result. Our future work will also include evaluating the
method with other developers to reveal shortcomings in the method and misinterpretations
from our side.

Apart from the MAL-based DSLs, the proposed method could also be used for more
general attack/defense graph/tree-based approaches, because they have the same need to
interpret and convert numeral values from many existing sources to probabilities to analyze
the security of a system or to harden the system for better security [25]. However, further
research is needed to generalize our proposal or to confirm that it works as is.

In order to evaluate MAL-based languages ensuring their correct functionality, our current
and future work also includes conducting qualitative assessment by investigating if the
language development process follows the principles of good language design [51], [52], [53],
and quantitative assessment by creating test cases and assessing the test coverage [54].
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