
Complex Systems Informatics and Modeling Quarterly (CSIMQ)

eISSN: 2255-9922

Published online by RTU Press, https://csimq-journals.rtu.lv

Article 149, Issue 26, March/April 2021, Pages 26–45

https://doi.org/10.7250/csimq.2021-26.02

Using i* and UML for Blockchain Oriented Software Engineering:
Strengths, Weaknesses, Lacks and Complementarity

Anne Sofie Vingerhoets1, Samedi Heng2, and Yves Wautelet1?

1KU Leuven, Oude Markt 13, 3000 Leuven, Belgium
2HEC Liège, Université de Liège, Rue Louvrex 14, 4000 Liège, Belgium

annesofie.vingerhoets@gmail.com, samedi.heng@uliege.be,

yves.wautelet@kuleuven.be

Abstract. New blockchain-based projects do appear every day. The
technology has indeed been popularized by cryptocurrencies but is now
gaining interest in various domains and new types of applications are
evaluated constantly. Understanding the impact of blockchain adoption
on the organization and the internals of blockchain-related behavior
nevertheless remains a challenge for managers but also for IT professionals.
This article studies how two existing organizational and software modeling
languages can be fit to document a blockchain development project
in Supply Chain Management (SCM) at its earliest stages. These two
frameworks are i* on the one side and the Unified Modeling Language
(UML) use case and sequence diagrams on the other side. The real life
project used as a case study in this application is ‘Farm-to-Fork’ where a
blockchain solution for the Supply Chain (SC) of farm animals is developed.
The application of the frameworks is intended to identify their strengths and
weaknesses. An extension of i* is proposed to deal with blockchain privacy
issues as well as laws and norms. We finally point to the complementarity
of i* and UML use case and sequence diagrams in a Blockchain-Oriented
Software Engineering (BOSE) context. The i* framework indeed supports
early requirements to understand the impact of the project on stakeholders
while UML use case and sequence diagrams support the late requirements
and the design by depicting the use of blockchain and some of its behavioral
mechanisms.
Keywords: i* Framework, Blockchain, Blockchain-Oriented Software
Engineering, Conceptual Modeling, Supply Chain Management,
Distributed Ledger.

1 Introduction

Blockchain, through its decentralized nature, is seen nowadays as a very promising technology
with applications that go far beyond the domain of cryptocurrencies. We have indeed seen
? Corresponding author

© 2021 Anne Sofie Vingerhoets, Samedi Heng, and Yves Wautelet. This is an open access article licensed under the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0).

Reference: A.S. Vingerhoets, S. Heng, and Y. Wautelet, “Using i* and UML for Blockchain Oriented Software Engineering:
Strengths, Weaknesses, Lacks and Complementarity,” Complex Systems Informatics and Modeling Quarterly, CSIMQ, no. 26,
pp. 26–45, 2021. Available: https://doi.org/10.7250/csimq.2021-26.02

Additional information. Author ORCID iD: S. Heng – https://orcid.org/0000-0002-6037-0914 and Y. Wautelet –
https://orcid.org/0000-0002-6560-9787. PII S225599222100149X. Received: 13 February 2021. Accepted: 15 April 2021.
Available online: 30 April 2021.

applications in healthcare, finance, land registry, Supply Chain Management (SCM), etc. The
field of blockchain is nevertheless still cumbersome to a lot of organization leaders that are in
trouble to understand the added value of applications, the impact on stakeholders, the use cases, the
infrastructure that has to be deployed, etc. Modeling the various stakeholders, their dependencies
but also the blockchain’s use cases and the dynamic between the actors then proves to be of
value. There is nevertheless no commonly agreed upon modeling standard for Blockchain-Oriented
Software Engineering (BOSE) adoption [1] so that existing modeling notations can be further
investigated to overview the extent to which they fit the purpose. This article studies two
existing modeling frameworks that could be used for such a purpose with a specific focus on
the Supply Chain (SC) domain. These frameworks are also further refined to better fit the needs of
blockchain-based modeling.

The i* framework [2] is a goal-oriented graphical requirement modeling notation [2]. It allows
an early requirement engineering analysis in environments where social actors depend on each
other for goals to be achieved, tasks to be performed, and resources to be furnished [2]. Previous
researches proved the relevance and utility of i* to model organizational requirements of a
“multi agent system” [3] facilitating stakeholders’ interactions by depicting their dependencies and
hence providing a mean for coordination. i* was previously used to model several organizational
settings [4] such as online stores [5], hospital beds management [6], [7], health care [2], SCs
and more specifically outbound logistics [8], production support in the steel industry [9], and
also for the development of higher education platforms like collaborative learning software [10]
and MOOCs [11]. The i* framework is divided in two parts providing each a different level of
abstraction: the Strategic Dependency (SD) and the Strategic Rationale (SR) model [2]. Figure 1
provides the core elements of the i* framework as well as their graphical representations. The SD
model shows dependencies and the SR model depicts internal intents.

Actor
Actor

Boundary

Goal

Task

Resource

Softgoal

D

Dependency Link

Decomposition Link

Legend:

Means-ends Link

Contribution Link

Some +

Figure 1. Relevant i* concepts and their graphical representations

The Unified Modeling Language (UML) [12] has for years been a reference in the field of
object-oriented development. UML use case diagrams are well known to describe the cases in
which a system can be used. We will thus apply it to depict the uses cases of a blockchain system.
Figure 2 provides the core elements of the UML use case diagrams as well as their graphical
representations. UML sequence diagrams are popular to describe the interactions between the
actors and objects part of a centralized system. This is useful for blockchain in SC Requirements
Engineering (RE) because the sequence diagram can depict a specific order of system operations,
which corresponds very well to the nature of the SC flow. This similarity makes sequence diagrams
a well-established candidate to model blockchain initiatives in the SC domain. Figure 3 provides
the core elements of the UML sequence diagrams as well as their graphical representations.

The contribution of this article to the existing literature is threefold:
Firstly, this article applies a combination of two modeling techniques (i.e., the i* framework, as

well as some UML models) to a relevant case study. The case study is based on the Farm-to-Fork
initiative. The Farm-to-Fork solution is a blockchain prototype for the end-to-end food SC of farm
animals. Interviews were conducted with 2 consultants including a validation of the produced
representations.

Secondly, the ability of i* and some UML models to represent a blockchain-related problem
in a SC context are evaluated against an extended set of criteria. The assessment criteria are
based on existing literature and on the interviewee’s expert opinions. This appraisal demonstrates

27

that both modeling techniques have their merits and deficiencies, and none of the two techniques
outperforms the other for modeling blockchain in a SC context.

System

UseCase

Actor2

Actor

�Powered By Visual Paradigm Community Edition

Figure 2. Relevant use case diagram concepts and their graphical representations

alt

[Guard condition]

Object

Actor

1.1: self message

1.2: return message

1: call message

�Powered By Visual Paradigm Community Edition

Figure 3. Relevant sequence diagram concepts and their graphical representations

Thirdly, a series of graphical extensions for the i* framework initially proposed by Ben Hamadi
et al. [13] but not validated yet have been applied to make these models more tailored to describe
blockchain in SCM. The enhancements include privacy concepts and the ability to model the
compliance with laws or norms.

The article is structured as follows. Section 2 briefly discusses the benefits of blockchain and
the related work. Section 3 explains the research paradigm, question and methodology. Section 4
discusses the case study on which we apply the frameworks, namely Farm-to-Fork. Section 5
describes the application of the i* framework on the case study while Section 6 describes the
application of the UML use case diagram and sequence diagrams on the same case. Finally,
Section 7 reports on the strengths and weaknesses of both frameworks and Section 8 concludes
the article.

2 Background

2.1 Benefits of Blockchain

The main benefits of blockchain technology lie in its increased transparency and
immutability [14], [15], [16]. Because the network is more accessible, transparency, and hence
reliability, are increased. Trust is created in a trustless system [15]. Furthermore, blockchain

28

technology provides a highly secure method of dealing with transactions by using asymmetrical
cryptography and hash functions [15]. While these are all primary benefits of blockchain, [16]
describes the decentralized approach as probably the biggest advantage, because intermediaries
are made completely redundant through a consensus mechanism in which data is verified by
all participants, distributed and stored across different locations. Cutting out the middleman has
the advantage of reducing overhead costs. Additionally, storing the database at different places
reduces the likelihood of hacking and loss of data in case the system goes down. This results
in a highly available system, where every node always has the same up-to-date version of the
truth. Taking away several nodes will not affect the integrity of the system on its own [15], [17].
Speed is also commonly described as a major benefit of the blockchain technology [16]. Speed
is defined in terms of transactional velocity, since blockchain removes all intermediaries who will
only slow down the transaction process because they often need to undertake lengthy verification
and approval procedures [14]. Data is immediately distributed and agreed upon [15].

2.2 Related Work

While previous literature has touched upon the adoption of blockchain technology for SCM,
it has failed to conceptually model these processes for software engineering. For instance,
Niranjanamurthy et al. [17] discuss how blockchain can meet SC objectives and present a few
small case studies to demonstrate how this technology is already used in businesses. The paper
nevertheless includes only superficial process descriptions. Other research articles, like Saberi
et al. [18] and Apte & Petrovsky [14] discuss the use of blockchain in SC and its benefits and
challenges but without providing a case study or conceptual model. Bettı́n-Dı́az et al. [16], Roa
[19] and Casado-Vara et al. [20] provide exemplary flowcharts, but these only describe a generic
implementation of blockchain in the SC of virtually any company in any industry. Furthermore,
Rocha et al. [1] and Marchesi et al. [21] have tried to model blockchain implementations for
a fidelity point program and for the workings of a university group, by using different UML
techniques. However, both these cases were mostly fictional and limited.

This article extends on previous research by Ben Hamadi et al. [13]. The latter paper studied
the use of the i* modeling language for blockchain technology in SC for Blockchain-Oriented
Software Engineering (BOSE), based on a case study of a Belgian retail giant. The study in this
paper further investigates and elaborates on this notably by applying extensions to i* as proposed
by Ben Hamadi et al. [13] but not developed in there; this has been done on a genuine case study.
Moreover, the present research additionally applies UML as a modeling technique. The latter is
widely adopted in businesses for specification stages in software engineering.

3 Research Paradigm, Question and Methodology

Research Paradigm. The research presented here takes roots in the Design Science paradigm
[22]; the latter aims to deliver generic solutions for known (or not yet considered) problems. The
result of a design science research problem can be a solution in the form an artifact, terminology,
methodology, engineering tool, and so forth. In the present research, we have enriched the i*
framework to better match with the problematic of blockchain as well as applied i* and UML
models for BOSE. Strengths and weaknesses of the models are explored, and a comparison
between the frameworks is presented, based on a set of criteria.

Research Question. Are extended i* models and UML use case/sequence diagrams appropriate
modeling techniques to visualize the organizational structure of blockchain ecosystems and how
can these two frameworks be extended and integrated to better fit this purpose?

Research Methodology. To answer the research question, a case study is required [23]. The
chosen case study is a Farm-to-Fork project. Farm-to-Fork is a SC tracking prototype that uses
blockchain to digitize the food SC and make it more transparent. The Farm-to-Fork project does not

29

have any technical documentation available, so all information was gathered through interviews.
Interviews have been conducted with two experts of blockchain working at the consultancy
company to gather the domain knowledge.

A first interview was conducted in February 2020 with Interviewee 1 (I1) a blockchain
consultant who has worked on, among others, blockchain projects for the Belgian government.
A second interview was conducted in April 2020 with Interviewee 2 (I2), another blockchain
expert working at the same company. He provided some additional insights. Out of the information
gathered from the interviews, we have elaborated several conceptual models using both i* and
UML techniques. A third, final validation session was organized in May 2020 with I2; the latter
then validated and confirmed the case study description as well as the associated representations.
After applying both modeling techniques to the case study, they have been compared at the light of
a set of criteria. As can be seen in Table 1, the criteria are based on three intakes: generic modeling
criteria based on existing literature [24,25]; blockchain-specific criteria defined in consultation
with blockchain expert (I2), and other criteria based on findings from applying both modeling
techniques. Comparing both techniques is useful to determine the pros and cons but also the
complementarity of each technique.

Table 1. Evaluation criteria to assess modeling techniques for blockchain in supply chain

Criterion Description References

Generic

Coverage
of elements

Whether certain things are difficult or impossible to express. This is
about the completeness of the available elements.

[24], [25]

Reusability Whether models can be reused in a different context. [25]
Guidelines
and tool-support

Whether clear guidelines and tools for the model are available. [24], [25]

Widespread
in different areas

Whether the modeling technique is standardized and generally adopted. [24]

Expert opinions

Restricting access
and privacy concepts

Whether the model can include privacy concerns. I1

Scalability Whether the model is scalable. I1
Ability to express
workflow patterns

Whether a flow or structure can be defined in the model. I1, [24]

Norms Whether the model can include the compliance of norms and
regulations.

I1

Other criteria

Social focus Whether the model can represent the actor’s intentions and internal
reasoning.

Dual granularity Whether the model allows for both a high-level and a more detailed
view of the system.

Flexibility
in modeling

Whether the model is not ‘deterministic’ but allows to model different
scenarios.

Technical concepts Whether the model has notations to introduce technical concepts.

4 Case Study
The case study, called Farm-to-Fork concerns a blockchain solution made to track farm animals
throughout the SC process, from “their birth to your plate”. The solution also includes an easy
to use app that gives an overview of the stages of the SC process, including QR-codes to track
animals. Every participant in the network, and therefore every node in the SC, can quickly check
the origin of the animal, the quality and the different previous steps that the animal has gone
through.

30

4.1 Farm-to-Fork

The Farm-to-Fork prototype was created to meet the increasing expectation levels for improved
transparency in the food industry. This solution provides an answer to many of those struggles.
I2 suggests that the most important benefits of this implementation are the traceability and the
liability aspects. Traceability ensures the ability for the SC participants to closely monitor the
animals and allows them to know the exact state and quality of the animal (product). Therefore,
it becomes much easier to detect contaminated batches, and to identify any such batches before
they can reach the final SC node (such as supermarkets) where they may create a health hazard
to unknowing consumers. This also helps to reduce waste. Additionally, I2 remarks that, even
if a contaminated product manages to get to consumers, it is much easier to trace down the
specific faulty batches, since all product information is meticulously and individually stored in
the blockchain. Therefore, in case a contaminated batch would still reach the end-consumers, the
health associated consequences will be much less severe.

The liability aspect that I2 mentions refers to knowing all the actions of the SC nodes, including
their consequences. For instance, fragile chicken eggs that are transported from node to node
throughout the SC can break at any stage. However, disputes can arise between the participants
of the SC network about who is responsible for this. With blockchain, these disputes can be settled
very quickly as the database can tell when and where every individual egg broke. Furthermore, the
advantages do not only apply to the producers, but also to the consumers, since the idea is also to
expose a part of the blockchain to them. Consumers can view information about a specific animal
product in the supermarket by scanning a QR-code. This enables consumers to verify the origin
and all the process steps that the animal has gone through. As consumers become more and more
critical about their food intake, it is also becoming more and more important for them to be able
to check the authenticity of their food. In this case, consumers could, for instance, check whether
chicken eggs come from free range chicken farms or what kind (and how much) of antibiotics they
have gotten.

However, it is important to mention that consumers should only have access to restricted, but
relevant information. If a consumer would also be able to see exactly how many chicken eggs they
have bought from a specific farmer, they might want to skip some parts of the SC cycle and go
straight to that farmer for eggs, leaving the rest of the SC nodes redundant and unprofitable. I2
underlines the importance to carefully assign specific access rights to each participant.

4.2 Farm-to-Fork Blockchain Type

The most appropriate blockchain type for the Farm-to-Fork solution is the permissioned enterprise
(or private) blockchain. Indeed, such type is only accessible for the responsible participants of the
SC. The roles and rights of every node are decided in consultation with all the participants at the
start of the blockchain implementation (I1). I2 nuances this by adding that the roles and rights
can still be changed afterwards. This can happen through a voting procedure. The rules for such a
voting are usually agreed at the start of the project and may, for instance, specify that there needs
to be a two thirds majority (2/3) in agreement before a rule can pass. Another example is that all
rule changes require unanimous votes. In case the voting is not successful, nothing will change. In
any case, in the context of Farm-to-Fork, consumers have fewer rights than the SC actors. All the
nodes’ identities are known and there is no problem in upscaling the network (I1).

4.3 Farm-to-Fork Raft Consensus

The network works by using the Raft consensus [26]. This is a consensus mechanism that assigns
one of three possible roles to every node in the network: follower, candidate or leader. At the start,
every node is a follower. Then, an election is held to vote which node becomes a leader. A majority
vote is conducted, every node is a possible candidate and the chosen leader is the one responsible

31

to validate the transactions in the blockchain (I1). I2 adds that every other node can (and will)
double-check the transactions afterwards for security, in order to avoid that the leader will validate
incorrect information. The election continues and when another majority vote is found, a new
leader is chosen. If the newly voted leader does not respond within a given timeframe (usually
around 300 milliseconds), then the leader is timed out and a new leader will be elected as well. This
mechanism offers to all parties the opportunity to become a leader, and thus becoming responsible
for the validation of the blockchain transactions (I1; [26]).

4.4 Overview of the Farm-to-Fork Blockchain Participants

The Farm-to-Fork solution is used in a context of farm animals that go through the SC. For this
article, the case study takes an in depth look at the logistic flow of chicken meat from farmer to
consumer.

The possible participants for the blockchain project, their respective roles within the SC and
their minimum required input into the blockchain are listed in Table 2. This represents a generic
model of how the solution works in this context. More (or less) participants could be involved,
depending on the needs and context of each specific SC’s structure.

Table 2. Farm-to-Fork blockchain network participants

Blockchain
participant

Task Input

Farmer Raising chickens. Characteristics of chickens, the kind of poultry feed used, the
sicknesses of chickens and their antibiotics, confirmation of
number of caught chickens.

Catcher Catching the chickens. Which chickens were caught and in which order.
Transporter
to butcher

Transports the chickens
from the farm to the butcher.

The conditions of the transportation such as the humidity, the
temperature, the shipment status.

Butcher Prepares the chicken meat. Number of chickens (slaughtered), treatments, treatment
conditions, storage, storage conditions, sizes and volume of the
pieces, quality control.

Packager Packs the meat according to
needs of the supermarket.

The amount of meat, the size and volume.

Transporter
to supermarket

Transports the chicken meat
from the packager to the
supermarket.

The conditions of the transportation such as the humidity, the
temperature, the shipment status.

Supermarket Sells the chicken meat to
consumers.

Amount of chicken meat and volume sold, stock data, waste data,
quality control.

The first participant in the network is the farmer. He is the starting point of the blockchain. The
farmer is responsible for raising the chickens on his farm, feeding them, and taking care of them.
This obliges him to insert data about the chickens into the blockchain. This data includes the kind
of chicken, its age, whether it is free range or not, whether it is biological, as well as the type of
poultry feed that is given to the chicken. Additionally, the data should also contain serious events
like chicken diseases (more precisely: what kind of sickness, illness period, type and quantity of
antibiotics). I1 remarks that some chicken characteristics can be derived from a small IoT machine
that is used already by many farmers. Such devices allow to inspect the blood of the chickens and
can be linked to the blockchain to automatically register this data [27]. The catcher then catches
the chickens of the farmer. The required data from this node describes which chickens were caught
(individual identification) and in which order. The order of the catching is important. I1 mentions
that during the process of catching chickens (to send them to the butcher), the last chickens have
more stress because they realize they will be captured. This increased stress level leads to a lower
quality of chicken meat (compared to those chickens that were caught first). So, the order is indeed

32

important to distinguish the higher quality chickens from the lower quality ones. The farmer will
confirm the number of chickens that were caught.

The node responsible for the transportation from the farm to the butcher will need to feed data
about the transport conditions into the blockchain. This includes, among other data elements,
the humidity and the temperature of the transport vehicle. Furthermore, the blockchain can be
helpful to monitor and control the loss or damage of the chickens. Additionally, shipment status
information is also required to permit the other nodes to track the chickens. I1 notes that, here too,
some information can be sent directly to the blockchain, via interfaces with IoT devices. Such IoT
devices can accurately capture the humidity and temperature levels in the transportation vehicle
[27].

The butcher who prepares the chicken meat will confirm the number of chickens received and
the number of chickens slaughtered. He will slaughter the chickens, apply treatments to the meat
and store it. All the treatments and all the conditions of treatments and storage must be recorded
into the blockchain database as well. The individual pieces or packs of chicken should be stored
into the blockchain by size and volume. Additionally, a thorough quality control is performed.

After the butcher, the packager will pack the meat in conformance with the supermarket’s
specifications and will record data about the different packages, such as the weight and the number
of packages.

The transporter will then transport the chicken meat from the packager to the final node of the
SC: the supermarket. Similar data as for the transport from the farmer to the butcher, is required.

Finally, in the supermarket, the meat should all be qualitative enough to sell to consumers. A
final quality control is performed. As a general remark, all nodes of the network must identify
themselves when entering data. This way, each process step is linked to the organization that is
responsible for it. Along every step of the SC, all nodes must perform quality control and report
their findings for maximal transparency. Nodes should also enter price data into the blockchain
database (I1). I2 adds that some data, like pricing, may be considered as sensitive information.
Therefore, he recommends to carefully restrict access to pricing data to those participants who
really need this type of information, without making it publicly available.

5 Using i* to Model the Farm-to-Fork Blockchain

5.1 Proposed Extensions for i* for Modeling Blockchains

Two types of extensions of i* are proposed in this article: privacy, and laws and norms.
Bashir [15] and Bettin-Diaz et al. [16] note that, from the various blockchain hurdles, the privacy

issue might be one of the most challenging. The privacy of all nodes in the network must be
respected by restricting access to certain data. The nodes themselves should be able to determine
which information can be accessed by whom and what information should be anonymized. The
importance of privacy should not be overlooked. Therefore, it is recommended that these privacy
requirements are explicitly modeled when visualizing blockchain in SCM. Ben Hamadi et al. [13]
proposed to extend the i* framework by adding the following concepts: access control, privacy
accountability, confidentiality and anonymity but did not implement it, this is done in this article.

Next to the privacy issues, I1 also stresses the importance of regulations. As blockchain is still
a relatively young technology, new regulations that limit the working of the blockchain and/or
smart contracts might become applicable. The legal binding of smart contracts in a court of
law is often a subject for debate [15]. I1 specifically refers to the repercussions of the GDPR
regulations on blockchain. Under GDPR, personal data should remain within the EU. This imposes
restrictions on public blockchains because there is no control on where the nodes are located. I1
mentions that this is less of a problem with private blockchains. Additionally, the ‘right to be
forgotten’ conflicts with blockchain as an immutable chain of historical transactions, although this
rule lacks a real, strict definition. Currently, a workaround exists whereby personal data is stored

33

‘off-chain’, outside the blockchain database. A reference and a hash of this data is then registered
in the blockchain. However, this destroys the purpose of the blockchain, since transparency is
diminished, data-ownership becomes vague, one need to find a new way to integrate data from
other participants and the data is more vulnerable to cyber-attacks. Siena et al. [28] and Siena,
Perini, Susi, & Mylopoulos [29] have introduced an i* extension to model laws and norms. Siena
et al. [28] revolves around the application of such extensions specifically for European food
traceability systems. This is particularly interesting for blockchain in SCM, as it is important for
system developers to understand how the blockchain should be compliant with which regulations.
Because blockchain is a technology which steadily becomes more widespread in the IT-landscape,
new regulations will emerge to control it legally.

Table 3 provides an overview of all suggested extensions, including their proposed graphical
notations. The i* extensions for privacy concepts and for laws and norms are taken over from the
literature.

Table 3. Proposed extensions of i* for BOSE

Concept Graphical notation Description References

Generic

Access control

Access to data in the chain is restricted
to certain nodes.This notation can be used
on data elements. The annotation allows to
specify who has access or who has not.

[13]

Privacy
accountability

The notation is used on a dataelement and
allows to make third parties accountable
for data manipulation under privacy
requirements.

[13]

Confidentiality

The data-owner can hide certain data from
the other nodes. This notation can be used
on data elements. [13]

Anonymity

An actor wants to anonymize his data
partially or completely.The notation is
used on an actor element and allows to
specify what data should be anonymized.

[13]

Laws and norms

Norms

An actor should be compliant with a
certain norm. This norm also has a source
(e.g., EU). [28]

5.2 Strategic Dependency Diagram – Farm-to-Fork with Blockchain

It should be apparent that, in case of a blockchain adoption for the Farm-to-Fork process, all
actors will become connected to each other through the blockchain system. To visualize such a
process, the blockchain system itself should also be represented as an actor, alongside the other

34

participants in the network. The relationship between the nodes in the SC and the blockchain
is indeed a dependent one. The blockchain network depends on the farmer, the catcher, the
transporters, the butcher, the packager and the supermarket for data. The data is validated and
saved into the blockchain. Certain nodes, like the transporter, can depend on the use of IoT devices
to automatically capture and send data to the blockchain. For the transporter, this data can include
the transportation conditions such as the humidity and the temperature. Based on this data, the
blockchain system can also verify whether the contractual terms are fulfilled. The (execution of
the) smart contracts therefore depend(s) on the data in the blockchain database. The system can
automatically execute the contract through these smart contracts. Because these smart contracts
depend on the input data of the SC nodes in the blockchain database, they are also represented as
an actor.

Additionally, the blockchain depends on the supermarket to specify the attributes that must
be collected by the various stakeholders as input for the blockchain database. On the other
hand, the supermarket node also depends on the blockchain data itself, to permit an analysis of
the optimal quality requirements (via business intelligence techniques on this data). After the
optimal conditions are estimated by the supermarket, the smart contracts need this list of quality
requirements to adjust the contract specifications. Moreover, consumers can check the product’s
history and origin by (partially) viewing the blockchain’s data. The SD model of such a SC process
is shown in Figure 4. The legend for the elements of this figure are represented in Figure 1.

Farmer Catcher

Transporter

Butcher

Packager

Supermarket
Smart

contract

Blockchain

Execute

contracts

Product

contractual

terms data

D

D

D

D

Quality

requirements

D

D

Product quality

attributes

D

IoT device
Product

data

D

D

D

D

Product

data

D

D

D

D

D

Input data

needed from

stakeholders

D

D

D

Consumer

PA

C

AC

Nodes can only

see the

requirements

of themselves,

not of other

nodes

Origin and

history of

productD D

AC

Consumers can

only see

limited parts of

the Blockchain

Hide pricing

information

Figure 4. Farm-to-Fork blockchain SD diagram using blockchain and smart contracts

Figure 4 also contains the extensions for privacy concepts. Consumers are only allowed to
see a limited part of the blockchain data and process. Next, the quality requirements imposed
by the supermarket are only distributed to the relevant nodes, depending on their respective
responsibilities within the overall process. The supermarket can also hide its own price data, since
this is classified as sensitive information. All nodes can specify what data they want to hide from
other nodes, and third parties should be held accountable when given access to manipulate this
data.

5.3 Strategic Rationale Diagram – Farm-to-Fork with Blockchain
The SR model focuses more on the internal rationale or reasoning of all the nodes, related to the
dependencies between actors.

35

In addition to the interaction between the different SC participants, the supermarket’s ability to
specify the quality requirements for each stakeholder is also important and is therefore depicted
with the SR model in Figure 5. The legend for the elements of this figure are represented
in Figure 1. The SR model focuses on the interdependencies between the supermarket, the
blockchain, the smart contracts, and the consumer. The supermarket is an especially important
node as the final product arrives here and is sold to consumers. Hence, the chicken meat must be
of the best quality in order to sell it to consumers. It is likely that most benefits of the blockchain
adoption are experienced in this stage of the SC: no more wastage because of higher quality and
avoidance of contaminated products, contaminated products can no longer get into the hands of
consumers which limits health risks, and consumer awareness is higher because they can scan the
QR-code on the packaging of the chicken meat to check the history of the product. Given these
four important actors (the supermarket, the blockchain, the smart contracts and the consumer), the
SR model can understand the ‘why’ of interdependencies.

Supermarket

Increase

profit margin

Increase sales

through

customer

awareness

Increase sales

through waste

reduction

Increase sales

through good

quality chicken Good quality

chicken

Set quality

specification

Analyze

product

conditions
Find optimal

product

conditions

Communicate

optimal

conditions to

nodes

Apply BI to

Blockchain

data

Blockchain

Smart

contract

Execute

contract

Check whether

contractual

terms fulfilled

Compare terms

to Blockchain

data

Check

Blockchain data

Product

quality

attributes

D

D

Store

transactional

data

Product

contractual

terms data

D

D

Store specific

data input from

nodes

Consumer

Origin and

history of

product

D

Chicken

meat ready

to eat

Payment

D

D

D

D

Execute

contracts

D

D

Input data

needed from

stakeholders

D

D

Quality

requirements

D

D

Adjust

contracts

Product

data

D

D

Store product

data

Check product

origin and

history

D

Verify product

authenticity

EU

GDPR

Protect

personal data

Guarantee right

to be forgotten
Fair and

transparant data

processing

Keep data

within EU

Store data only

when neccesary for

purpose

Ensure data

integrity, security

and confidentiallity

Figure 5. Farm-to-Fork blockchain SR diagram to specify quality requirements

The original i* extension to describe regulatory compliance was specifically targeted towards
the SR type of models in i*. Figure 5 shows the integration of the EU GDPR law in the SR model.
The overall aim of the regulation is to protect personal data. As shown in Figure 5, this can be
achieved through guaranteeing the ‘right to be forgotten’, keeping data processing transparent,
only recording data when necessary, keeping the data within the EU and ensuring data integrity,
security and confidentiality.

36

6 Using UML to Model the Farm-to-Fork Blockchain
6.1 UML Use Case – Farm-to-Fork

The use case diagram is depicted in Figure 6. The legend for the elements of this figure is
represented in Figure 2. All network nodes can input, store and verify data. The verification of
data can only be fulfilled when a leader is appointed in the Raft consensus mechanism, although
every node will double check the verification of the leader (I2). Additionally, the supermarket
can provide quality specifications that must be adhered to by all parties. Here, smart contracts are
shown as an actor even though they are an integrated part of the blockchain system. This is done
to show the possible actions of the smart contracts (i.e., checking whether contractual terms are
fulfilled or not and automatically executing the smart contracts). Moreover, consumers can check
the history and origin of products by scanning a QR-code.

Packager

Butcher

Transporter

Catcher

Farmer Supermarket

Consumer

Smart contracts

Participate in voting

for a Raft leader

Check product history

and origin

Execute smart contract

Check whether contractual

terms are fulfilled

Provide quality

specification

Verify Data

Store Data

Input Data

Blockchain

<<Include>>

Figure 6. Farm-to-Fork blockchain use case diagram

6.2 UML Sequence Diagram – Farm-to-Fork

The sequence diagram shows the order in which the activities occur. As already mentioned, this is
especially useful for SC processes. The Farm-to-Fork sequence diagram is depicted in Figure 7.
The legend for the elements of this figure are represented in Figure 3 and details on the supported
process can be found in Section 4.

With every blockchain return message ‘Verification of data’, an alternative fragment should take
place, which defines what happens if the verification is successful and what happens if it is not.
However, for simplicity reasons, in Figure 7, this alternative (or alt-) fragment is only explicitly
modeled for the first occurrence where the blockchain wants to verify data (i.e., at the farmer’s
data entry). Thus, although not explicitly modeled, this alt-fragment takes place every time the
blockchain wants to verify data.

As mentioned before, the transporter can use an IoT device to automatically save and send
transportation data to the blockchain. This proposed IoT device is also included in the sequence
diagram to show the effects of the implementation.

Finally, at the bottom, a loop is included. This represents the quality requirement updates that
the supermarket can repeatedly implement whenever a new (local or global) optimum is found for
the process conditions (e.g., by using business intelligence tools).

37

alt

alt

loop

[Contract terms fulfilled]

[Contract terms not fulfilled]

[When using IoT device to gather data]

[When not using IoT device to gather data]

[If verification = false]

[If verification = true]

alt

[Until optimal parameters found]

Blockchain Smart contract

FarmerCatcherTransporterButcherPackagerSupermarket

IoT device

19:

7.1: Do not store data

7: Notify participants

3: Store data

17.11: Search for optimal parameters

17.8: Verification of data

17.7: Insert transportation conditions

17: Accept transfer request

12: Connect IoT device to Blockchain

18.1: Change smart contract

17.10: Verification of data

17.9: Insert supermarket data

17.6: Verification of data

17.4: Verification of data

17.5: Insert packaging data

17.3: Insert butcher data

17.2: Verification of data

17.1: Transfer data from IoT device to Blockchain

10: Insert transportation conditions

8: Insert catching data

11: Verification of data

9: Verification of data

2: Verification of data

1: Insert farmer data

18: Set quality requirements

6: Execute smart contract penalty

5: Execute smart contract payments

4.1: Contract checked

4: Check whether contractual terms fulfilled

16: Request confirmed

15: Request to transfer data from IoT device to Blockchain

14: Data stored

13: Connect IoT to store data

�Powered By Visual Paradigm Community EditionFigure 7. Farm-to-Fork blockchain sequence diagram

Next to the overall sequence diagram in Figure 7, also the Raft consensus mechanism
(previously discussed in Section 4.3) can be represented by a sequence diagram. Figure 8 shows
the model for this blockchain consensus mechanism. The whole election process loops until a

38

candidate with the highest term or majority vote becomes leader. A new leader is appointed through
a new election when a new majority vote has been found or when the appointed leader times out.

[Until leader with highest term elected]

loop

alt

[If respons in 300 miliseconds]

[If no respons in 300 miliseconds]

Follower

Blockchain

Candidate Leader

9:

3: Register candidate

8.3: Double check transaction verification

8.2: Transactions verified

8.1: Verify transactions

8: Register leader
7: Become leader

6: Restart election

5: Time out

4: Become leader
3.1: Vote for leader

2: Become candidate

1.1: Election started

1: Start election

�Powered By Visual Paradigm Community EditionFigure 8. Farm-to-Fork blockchain sequence diagram for raft consensus mechanism

Finally, Figure 9 depicts that consumers can access a limited part of the product history in the
blockchain. This can be done by scanning the label of the product in the supermarket with their
phone. Using a mobile app, consumers can view some of the processes of the SC.

Consumer

BlockchainMobile app

3.3: Transfer product history

3.2: Request limited product history

3.1: Connect to Blockchain

3.4: View product history

3: Process data

2: Scan QR-code

1: Open mobile app

�Powered By Visual Paradigm Community Edition

Figure 9. Farm-to-Fork blockchain sequence diagram for consumer access

7 Evaluation of i* and UML for Modeling BOSE in SCM

This section compares the pros and cons of the SD and SR models (i* framework) versus the use
cases and sequence diagrams (UML) as modeling techniques for BOSE. The evaluation criteria

39

have been presented in Section 3. Both frameworks are evaluated using these criteria, then a
summary is given.

7.1 Evaluation of the i* Framework to Model Blockchain in SCM

This section maps the characteristics of the i* framework against the set of criteria described in
Section 3.

Generic criteria:

• Coverage of elements. The internal behavior of the system cannot be represented with i*. Also,
both the Raft consensus mechanism and the execution of smart contracts cannot be explicitly
represented;

• Reusability. Reuse of i* models can be envisaged for different blockchain situations;
• Guidelines and tool-support. No CASE-tool provides the explicit extensions for blockchain

yet;
• Widespread in different areas. The framework has been applied in various areas but barely

in the field of blockchain.

Expert opinions:

• Restricting access and privacy concepts. The i* representations lack a way to include
the blockchain’s (here private) typing. Consumers clearly should have restricted access and
restricted rights when accessing the blockchain. There is no way to represent restricted access
in i*. Moreover, not only consumers, but also other network SCM nodes may express the need
to keep certain information private or even to anonymize specific data;

• Scalability. A major downside of i* to represent a blockchain-based problem is its growing
complexity when the network expands. This disadvantage is not specifically tied to the
blockchain field but rather to the nature of the SC. In the Farm-to-Fork case, only seven SC
nodes (including the consumer) were identified. In many SCs, the number of nodes can be
higher which would increase the complexity of the representation;

• Ability to express workflow patterns. The i* framework lacks the notion of structure or
sequence which can be seen as a drawback in the context of SCs;

• Norms. The i* framework does not allow the modeling of laws or norms that should be
respected when adopting blockchain in SCM.

Other criteria:

• Social focus. In the context of SCM, the i* framework is particularly suited because every SC
involves a network of depending actors. The social focus is here very appropriate. This is also
valid for the blockchain system itself and for the smart contracts: interactions of the blockchain
within the SC process can be modeled, making it clearer what role the system plays in the SC;

• Dual granularity. While the SD model allows for a high-level and more abstract view of the
network, the SR one provides a more detailed understanding of the reasoning behind the actions
in the process [2]. These two levels permit the modeling of blockchain and smart contracts to
be depicted at a high level as well as on a more detailed one. This allows a better understanding
of the tasks of the blockchain and smart contracts, and to what goals they contribute;

• Flexibility in modeling. The means-end links in the SR model can depict how a certain goal
can be achieved through different tasks or different means [2]. Conceptually, this gives room for
different options and scenarios to be modeled. The use of blockchain technology in SC offers
many options to make processes more efficient so it provides new opportunities for actors to
achieve their goals. Being able to flexibly model these means is as a plus of i*;

• Technical concepts. The i* framework fails to entirely capture blockchain as a technology,
because it is oriented on social concepts. The blockchain database is represented as an actor

40

in the diagrams. i* lacks dedicated stereotypes to represent specific system components. The
inability to depict the blockchain system technically is a major disadvantage of i*. Within the
i* framework, it is thus unclear that the actors use the blockchain database to store information
about their SC processes using cryptographic means to verify and validate data from other
nodes.

7.2 Evaluation of the UML Use Case and Sequence Diagrams to Model Blockchain in
SCM

Similarly as for i* in the previous section, this section gives an overview of the pros and cons
of using the UML use cases and sequence diagrams for BOSE in the SCM domain. Because the
UML use cases and sequence diagrams complement each other, and are often used together, the
evaluation of the modeling criteria applies to the combination of both diagrams. The set of criteria
for evaluation is described in Section 3.

Generic criteria:

• Coverage of elements. UML models provide a broad coverage because they can depict the
Raft consensus mechanism, the verification of data and the functions of the smart contracts.
This is in line with findings of a study by [1]. Also, the interaction between the blockchain
database and other devices such as IoT devices to gather data automatically can be represented
with UML diagrams. [21] also points to the sequence diagram as one of the best diagrams to
accurately visualize the workings of smart contracts;

• Reusability. The UML diagrams are not bound to a specific situation but can be modeled for
various purposes and in different contexts;

• Guidelines and tool-support. Many sources of explanation such as guidelines about the UML
models exist online. Furthermore, many CASE-tools support UML representations;

• Widespread in different areas. [1] points out that UML is a widely known and adopted
modeling technique, which makes it easy to use for most software engineers, as they are
probably already familiar with it.

Expert opinions:

• Restricting access and privacy concepts. UML diagrams lack privacy concepts in their
modeling techniques. Use case and sequence diagrams fail to specify restrictions of access,
anonymity of data or any privacy matters;

• Scalability. The combination of the UML use case Diagram with sequence diagrams is
scalable: with an increased set of actors, the model will not become overly complex as the
models have an organized structure and a specific flow, making it easier to follow even with an
increasing number of SC participants;

• Ability to express workflow patterns. In the sequence diagram a certain sequence of events
or order of actions is established. This fits very well with the flows of SCs as it also contains a
strict sequential order. Showing this flow or structure makes it easier to understand the supply
chain process, from start to finish. This is also particularly relevant for modeling the consensus
mechanism behind a blockchain;

• Norms. UML use case and sequence diagrams do not allow the modeling of laws or norms that
must be obeyed when adopting blockchain in SCM.

Other criteria:

• Social focus. By their nature, UML use cases and sequence diagrams are focused on late
analysis and software design, rather than on social aspects. These diagrams are functionally
or behaviorally defined for the purpose of building a to-be system. Social aspects, such as
intentions behind actions, reasoning of actors or goals cannot be represented;

41

• Dual granularity. Like the i* approach, a dual granularity is possible within UML. The use
case diagram depicts a high-level overview of the system while the sequence diagram provides
more details about the internal working of the system and the different interactions with the
actors. Both diagrams complement each other nicely to provide a better understanding of the
requirements;

• Flexibility in modeling. The UML use case and sequence diagrams lack some flexibility as
they tend to document a unique solution. They do not provide the flexibility of modeling
different means to get to one end;

• Technical concepts. The two UML diagrams represent interactions of actors with a system.
Both the use case and the sequence diagrams are targeted to represent the workings of the
blockchain system itself and are able to represent the blockchain as a system.

7.3 Summary

As can be seen in Table 4 (that provides a final evaluation), the two frameworks distinguish
themselves by their different purpose: while i* is social-focused, the UML use case and sequence
diagrams are system-oriented. Both techniques are complementary. Therefore, we recommend to
use the i* framework during the early phases of RE. This enables system developers to understand
the ‘why’ of the SC process, giving a clear overview of the interdependencies and the goals of
all nodes in the blockchain network, as this is the core of the blockchain’s decentralized system.
During later phases, UML diagrams can be applied to design the system’s interactions with the
different actors of the SC in more detail.

Table 4. Comparison of i* and UML for modeling BOSE in SCM

Criteria Description i* UML

Generic

Coverage of elements Whether certain things are difficult or impossible to express.
This is about the completeness of the available elements.

- +

Reusability Whether models can be reused in a different context. + +
Guidelines
and tool-support

Whether clear guidelines and tools for the model are available. - +

Widespread
in different areas

Whether the modeling technique is standardized and generally
adopted.

- +

Expert opinions

Restricting access and
privacy concepts

Whether the model can include privacy concerns. - -

Scalability Whether the model is scalable. - +
Ability to express
workflow patterns

Whether a flow or structure can be defined in the model. - +

Norms Whether the model can include the compliance of norms and
regulations.

- -

Other Criteria

Social focus Whether the model can represent the actor’s intentions and
internal reasoning.

+ -

Dual granularity Whether the model allows for both a high-level and a more
detailed view of the system.

+ +

Flexibility
in modeling

Whether the model is not ‘deterministic’ but allows to model
different scenarios.

+ -

Technical concepts Whether the model has notations to introduce technical concepts. - +

42

8 Conclusion

Blockchain is still a relatively young technology. Nevertheless, the many benefits of its adoption in
SCM are apparent. The immutable characteristic of the ledger provides enhanced transparency,
improved product traceability, higher transactional speed, increased security, and an overall
cost-effective approach.

Simultaneous with blockchain’s rise in popularity, the existing literature about blockchain’s
adoption in SCM is expanding as well. However, no standard modeling technique exists for the
modeling of BOSE, especially with respect to its adoption within SC processes. This article
therefore researches two different modeling languages, the i* framework and the UML use cases
and sequence diagrams, which appear to be very well suited to model blockchain’s adoption in
SCM. The article contributes to the existing literature by applying both modeling languages to
a blockchain case study and by making a comparative analysis between both. Also a number of
model extensions are proposed to enhance the capabilities of i*.

After applying both modeling languages to the case, a comparative evaluation between both
approaches was performed. A set of assessment criteria was established and we conclude on
the complementarity of the approaches. The in-depth comparison between both approaches has
revealed that they also lack some elements to model BOSE in SCM to its full extent. Hence, new
graphical concepts are proposed to enhance the models. First, in line with Ben Hamadi et al. [13],
this paper recommends the inclusion of privacy concepts. Next, because of the importance of laws
and upcoming regulations that will determine the future direction of blockchain technology, the
enhancement of the i* framework for laws and norms is also recommended.

From the underlying analysis for this article, it is clear that the i* framework can be used during
the early phases of requirements engineering, to ameliorate and deepen the understanding of the
social aspects, the intentions, and the underlying goals of all actors in the blockchain network.
The i* focus on the interdependencies between actors in the network reflects the core of trust
in the blockchain’s decentralized system. The two UML models lead to late analysis and design
diagrams and give an overview of how the system should work, including the interactions between
the different actors. The UML diagrams can thus be used, complementary to the i* framework,
during later phases of the requirements gathering process. Combined, the i* framework will help
to understand the ‘why’ of the business processes, while the UML diagrams will focus more on
the ‘what’.

The present study combined with Ben Hamadi et al. [13] lead us conclude that i* and
its refinements are relevant for each BOSE development in SCM. Future work includes (i)
the application of the enhanced i* framework in other domains, (ii) the application of other
frameworks, notable the business use case model together with BPMN (see [30], [31]) and (iii)
the development of transformation (forward engineering) rules first from the i* SD to the use case
model and from the i* SR to sequence diagrams to have an integrated framework. After that, the
trace between elements from the i* SR and sequence diagrams and object and agent messages can
also be studied to transform the models into code for runtime execution.

References
[1] H. Rocha and S. Ducasse, “Preliminary steps towards modeling blockchain oriented software,”

in WETSEB2018. IEEE, 2018, pp. 52–57. [Online]. Available: https://doi.org/10.1145/3194113.
3194123

[2] E. Yu, P. Giorgini, N. Maiden, and J. Mylopoulos, Social Modeling for Requirements Engineering.
MIT Press, 2011. [Online]. Available: https://doi.org/10.7551/mitpress/7549.001.0001

[3] Y. Wautelet and M. Kolp, “Business and model-driven development of BDI multi-agent systems,”
Neurocomputing, vol. 182, pp. 304–321, 2016. [Online]. Available: https://doi.org/10.1016/j.neucom.
2015.12.022

43

https://doi.org/10.1145/3194113.3194123
https://doi.org/10.1145/3194113.3194123
https://doi.org/10.7551/mitpress/7549.001.0001
https://doi.org/10.1016/j.neucom.2015.12.022
https://doi.org/10.1016/j.neucom.2015.12.022

[4] Y. Wang, T. Li, Q. Zhou, and J. Du, “Toward practical adoption of i* framework: an automatic
two-level layout approach,” Requirements Engineering, pp. 1–23, 2021. [Online]. Available:
https://doi.org/10.1007/s00766-021-00346-4

[5] M. Kolp, Y. Wautelet, and S. Faulkner, “Sociocentric design of multi-agent architectures,” in Social
Modeling for Requirements Engineering. MIT Press, 2011.

[6] Y. Wautelet, “A model-driven IT governance process based on the strategic impact evaluation of
services,” J. Syst. Softw., vol. 149, pp. 462–475, 2019. [Online]. Available: https://doi.org/10.1016/j.
jss.2018.12.024

[7] Y. Wautelet, M. Kolp, S. Heng, and S. Poelmans, “Developing a multi-agent platform
supporting patient hospital stays following a socio-technical approach: Mgmt. and governance
benefits,” Telematics and Informatics, vol. 35, no. 4, pp. 854–882, 2018. [Online]. Available:
https://doi.org/10.1016/j.tele.2017.12.013

[8] Y. Wautelet, “Representing, modeling and engineering a collaborative supply chain management
platform,” Intl. J. of Info. Systems and Supply Chain Mgmt., vol. 5, no. 3, pp. 1–23, 2012. [Online].
Available: https://doi.org/10.4018/jisscm.2012070101

[9] Y. Wautelet, M. Kolp, and L. Penserini, “Service-driven iterative software project management with
i-tropos.” J. UCS, vol. 24, no. 7, pp. 975–1011, 2018.

[10] M. Kolp and Y. Wautelet, “Human organizational patterns applied to collaborative learning
software systems,” Computers in Human Behavior, vol. 51, pp. 742–751, 2015. [Online]. Available:
https://doi.org/10.1016/j.chb.2014.11.094

[11] Y. Wautelet, S. Heng, M. Kolp, L. Penserini, and S. Poelmans, “Designing an mooc
as an agent-platform aggregating heterogeneous virtual learning environments,” Behaviour &
Information Technology, vol. 35, no. 11, pp. 980–997, 2016. [Online]. Available: https:
//doi.org/10.1080/0144929X.2016.1212095

[12] OMG, “Omg unified modeling language (omg uml). version 2.5.1,” Tech. Rep., 2017.

[13] Y. B. Hamadi, S. Heng, and Y. Wautelet, “Using i*-based organizational modeling to
support blockchain-oriented software engineering: Case study in supply chain mgmt.” in
The Intl. Research & Innovation Forum. Springer, 2020, pp. 495–515. [Online]. Available:
https://doi.org/10.1007/978-3-030-62066-0 38

[14] S. Apte and N. Petrovsky, “Will blockchain technology revolutionize excipient supply chain
management?” Journal of Excipients and Food Chemicals, vol. 7, no. 3, p. 910, 2016.

[15] I. Bashir, Mastering blockchain. Packt Publishing Ltd, 2017.

[16] R. Bettı́n-Dı́az, A. E. Rojas, and C. Mejı́a-Moncayo, “Methodological approach to the definition
of a blockchain system for the food industry supply chain traceability,” in Intl. Conf. on
Computational Science and Its Applications. Springer, 2018, pp. 19–33. [Online]. Available:
https://doi.org/10.1007/978-3-319-95165-2 2

[17] M. Niranjanamurthy, B. Nithya, and S. Jagannatha, “Analysis of blockchain technology: pros,
cons and swot,” Cluster Computing, vol. 22, no. 6, pp. 14 743–14 757, 2019. [Online]. Available:
https://doi.org/10.1007/s10586-018-2387-5

[18] S. Saberi, M. Kouhizadeh, J. Sarkis, and L. Shen, “Blockchain technology and its relationships to
sustainable supply chain mgmt.” Intl. J. of Production Research, vol. 57, no. 7, pp. 2117–2135, 2019.
[Online]. Available: https://doi.org/10.1080/00207543.2018.1533261

[19] N. Rao, “The time is now,” Quality Progress, vol. 51, no. 10, pp. 18–23, 2018.

44

https://doi.org/10.1007/s00766-021-00346-4
https://doi.org/10.1016/j.jss.2018.12.024
https://doi.org/10.1016/j.jss.2018.12.024
https://doi.org/10.1016/j.tele.2017.12.013
https://doi.org/10.4018/jisscm.2012070101
https://doi.org/10.1016/j.chb.2014.11.094
https://doi.org/10.1080/0144929X.2016.1212095
https://doi.org/10.1080/0144929X.2016.1212095
https://doi.org/10.1007/978-3-030-62066-0_38
https://doi.org/10.1007/978-3-319-95165-2_2
https://doi.org/10.1007/s10586-018-2387-5
https://doi.org/10.1080/00207543.2018.1533261

[20] R. Casado-Vara, J. Prieto, F. De la Prieta, and J. M. Corchado, “How blockchain improves the
supply chain: Case study alimentary supply chain,” vol. 134, pp. 393–398, 2018. [Online]. Available:
https://doi.org/10.1016/j.procs.2018.07.193

[21] M. Marchesi, L. Marchesi, and R. Tonelli, “An agile software engineering method to design blockchain
applications,” pp. 1–8, 2018. [Online]. Available: https://doi.org/10.1145/3290621.3290627

[22] A. R. Hevner, S. T. March, J. Park, and S. Ram, “Design science in information systems research,”
MIS Q., vol. 28, no. 1, pp. 75–105, 2004. [Online]. Available: https://doi.org/10.2307/25148625

[23] P. Runeson, M. Host, A. Rainer, and B. Regnell, Case study research in software engineering:
Guidelines and examples. John Wiley & Sons, 2012. [Online]. Available: https://doi.org/10.1002/
9781118181034

[24] Z. D. Kelemen, R. Kusters, J. Trienekens, and K. Balla, “Selecting a process modeling language for
process based unification of multiple standards and models,” Tech. Rep., 2013.

[25] F. Ruiz, F. van Harmelen, M. Aben, and J. van de Plassche, “Evaluating a formal modelling language,”
in A Future for Knowledge Acquisition, 8th European Knowledge Acquisition Workshop, EKAW’94,
Hoegaarden, Belgium, September 26-29, 1994, Proceedings, ser. Lecture Notes in Computer Science,
L. Steels, G. Schreiber, and W. V. de Velde, Eds., vol. 867. Springer, 1994, pp. 26–45. [Online].
Available: https://doi.org/10.1007/3-540-58487-0 2

[26] D. Huang, X. Ma, and S. Zhang, “Performance analysis of the raft consensus algorithm for private
blockchains,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 50, no. 1, pp.
172–181, 2019. [Online]. Available: https://doi.org/10.1109/TSMC.2019.2895471

[27] P. Wognum and T. van Erp, TIVO-Traceerbaarheid van Individuele Varkens in de Organische keten.
Een brug naar kennisdeling - Eindrapport. TIVO, 2013.

[28] A. Siena, N. Maiden, J. Lockerbie, K. Karlsen, A. Perini, and A. Susi, “Exploring the effectiveness
of normative i* modelling: Results from a case study on food chain traceability,” in CAiSE2018.
Springer, 2008, pp. 182–196. [Online]. Available: https://doi.org/10.1007/978-3-540-69534-9 15

[29] A. Siena, J. Mylopoulos, A. Perini, and A. Susi, “Designing law-compliant software requirements,”
in International Conference on Conceptual Modeling. Springer, 2009, pp. 472–486. [Online].
Available: https://doi.org/10.1007/978-3-642-04840-1 35

[30] Y. Wautelet and S. Poelmans, “An integrated enterprise modeling framework using the RUP/UML
business use-case model and BPMN,” in The Practice of Enterprise Modeling PoEM 2017, Leuven,
Belgium, Proceedings, ser. LNBIP, vol. 305. Springer, 2017, pp. 299–315. [Online]. Available:
https://doi.org/10.1007/978-3-319-70241-4 20

[31] Y. Wautelet and S. Poelmans, “Aligning the elements of the RUP/UML business use-case model and
the BPMN business process diagram,” in Requirements Engineering: Foundation for Software Quality
- 23rd International Working Conference, REFSQ 2017, Essen, Germany, February 27 - March 2,
2017, Proceedings, ser. Lecture Notes in Computer Science, P. Grünbacher and A. Perini, Eds., vol.
10153. Springer, 2017, pp. 22–30. [Online]. Available: https://doi.org/10.1007/978-3-319-54045-0 2

45

https://doi.org/10.1016/j.procs.2018.07.193
https://doi.org/10.1145/3290621.3290627
https://doi.org/10.2307/25148625
https://doi.org/10.1002/9781118181034
https://doi.org/10.1002/9781118181034
https://doi.org/10.1007/3-540-58487-0_2
https://doi.org/10.1109/TSMC.2019.2895471
https://doi.org/10.1007/978-3-540-69534-9_15
https://doi.org/10.1007/978-3-642-04840-1_35
https://doi.org/10.1007/978-3-319-70241-4_20
https://doi.org/10.1007/978-3-319-54045-0_2

	-0.7emUsing i* and UML for Blockchain Oriented Software Engineering: Strengths, Weaknesses, Lacks and Complementarity-0.1em

