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Abstract. Modeling IT architecture is a complex, time consuming,
and error prone task. However, many systems produce information
that can be used for automating modeling. Early studies show that
this is a feasible approach if we can overcome certain obstacles.
Often more than one source is needed in order to cover the data
requirements of an IT architecture model; and the use of multiple
sources means that heterogeneous data needs to be merged. Moreover,
the same collection of data might be useful for creating more than
one kind of models for decision support. IT architecture is constantly
changing and data sources provide information that can deviate from
reality to some degree. There can be problems with varying accuracy
(e.g. actuality and coverage), representation (e.g. data syntax and file
format), or inconsistent semantics. Thus, integration of heterogeneous
data from different sources needs to handle data quality problems of
the sources. This can be done by using probabilistic models. In the
field of truth discovery, these models have been developed to track data
source trustworthiness in order to help solving conflicts while making
quality issues manageable for automatic modeling. We build upon
previous research in modeling automation and propose a framework for
merging data from multiple sources with a truth discovery algorithm to
create multiple IT architecture models. The usefulness of the proposed
framework is demonstrated in a study where models using three tools
are created, namely; Archi, securiCAD, and EMFTA.
Keywords: IT Architecture Modeling, System Modeling, Automatic
Data Collection, Automatic Modeling.

1 Introduction

Modern enterprise architecture is complex [1]. Systems and software that have a prevalent
role in everyday tasks are interconnected and used in different ways by employees, partners,
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and suppliers. Moreover, these software and systems change when an organization keeps
evolving. Models, representations that explain and characterize real system entities, can
be employed to understand and manage such a complex reality. However, in order to base
important decisions on models, the models need to be created using updated information [2].
For large organizations with many interconnected systems and software this is difficult, time
consuming, and error prone.

Currently, many available approaches for enterprise modeling are manual. At the same
time there is a vast amount of data available within organizations that could be used for
modeling. The availability of this data makes automation of modeling possible, and helps to
capture and evaluate dynamic changes in enterprise IT architecture with less effort. There
have been attempts to collect data for automatic modeling in previous studies. Buschle et
al. [3] use data collected with a vulnerability scanner to instantiate a metamodel for IT
architecture security evaluation. In another study, Holm et al. [4] utilize a similar method to
generate an ArchiMate model. The authors in the two studies show that the proposed method
is applicable and can be used to generate sufficiently accurate models much faster than with
manual modeling. However, the authors in both papers conclude that while the data sources
they used were providing good enough data, only a subset of all the metamodel entities
could be instantiated. To create more complete models additional data sources are needed.
The need for multiple data sources for enterprise system modeling has been mentioned by
multiple authors such as [5], [6], [7], [8]. Thus, modeling automation would benefit from
using multiple data sources. However, the sources often provide data with different scope
and representation.

Niemi and Pekkola [9] state that artifacts like architecture models need to cover multiple
domains. According to Frank [10], an enterprise can be represented with a set of domain
specific interrelated diagrams that represent domain models and are connected through
shared concepts. Various enterprise models are described in [11]. A logical conclusion is that
an automated modeling approach would not only benefit from using multiple data sources,
but also from being able to support the creation of more than one model representing multiple
enterprise domains. In our work we focus on IT architecture modeling that covers application
components, data, users and IT infrastructure on a holistic enterprise level. The main reason
for this delimitation is the availability of data that easily can be automated. However, we
believe that the framework supports inclusion of other layers of enterprise architecture as
well. Figure 1 shows the scope of the enterprise modeling covered in this article using an
ArchiMate standard1 inspired figure. This leads to our first research question: How can
automated system modelling use multiple and heterogeneous sources in an extensible way?

To ensure successful data integration, different data sets must have, or be given, a common
semantic and structural representation [12], [13]. Data needs to be transformed to the same
granularity level (the same level of abstraction) [6] and the conflicts between different data
sets need to be resolved. Sources from different domains, however, provide data about
various aspects of an enterprise, with varying accuracy (e.g. actuality and coverage) and
representation (e.g. data syntax and file format). Data semantics can be inconsistent from
one data source to another. Thus, data sets from different sources can be attributed varying
degrees of trustworthiness. To manage the quality of data this trustworthiness should be
taken into account when an unknown number of heterogeneous data sources are used for
automated model creation. There are many sources that deals with data integration, e.g.
[12], [13], [14], and trust in data sources, e,g, [15], [16], [17], [18], [19], [20]. While some
of the techniques for data source trustworthiness management described by the authors
could be extended to the enterprise domain, none of the authors have investigated this
1 http://pubs.opengroup.org/architecture/archimate2-doc
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Figure 1. Mainly the technology and partly the application enterprise layers are studied in the
article. The studied elements are highlighted with dark red rectangles.

explicitly, leading to our second research question: How can trustworthiness of multiple and
heterogeneous sources be included in automated system modelling?

The authors have not found a solution in the existing literature that addresses the research
questions in an integrated manner. Thus, there is a gap in the field, which we aim to address
by proposing a novel framework. The proposed framework stores data in a hybrid database,
supports multiple metamodels with model adapters, and uses, among other methods, truth
discovery for conflict resolution and prioritization of data from certain sources.

The applicability of the proposed framework is shown in a study generating three different
models using ArchiMate (enterprise modeling), securiCAD (holistic threat modeling), and
FTA (Fault Tree Analysis modeling). The study uses empirical data gathered from a
virtualized Supervisory Control and Data Acquisition (SCADA) environment that depicts
the systems and software setup of a small electric utility with a substation.

The remainder of the article is structured as follows. Section 2 gives an overview of
the related literature. Section 3 presents the proposed framework. Section 4 describes a
study, where three different system models are automatically generated using the framework.
Section 5 discusses the findings and future work, and Section 6 concludes our article.

2 Related Work

The following sections describe the related work on automated modeling and data integration
with the focus on conflict resolution.

2.1 Automated and Multi-source Modeling

Enterprise systems architectures are complex. An organization uses various architectural
elements such as information systems, business processes and technical components that
have different relationships with each other [21]. Complex architecture also means that the
management of the architecture becomes complicated. Enterprise architecture management
needs to consider the impact that changes to an element have to the architecture as a whole.
Enterprise architecture metamodels are often used to run different simulations and analyses
[22], [23], which requires granular and up-to-date information [24]. Up to date information
is critical for the success of enterprise transformation projects [8].
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The stakeholders involved in enterprise architecture management tend to be experts
in their own fields and therefore need different viewpoints [25] of the enterprise to make
decisions [1]. According to Niemi and Pekkola [9], artifacts – such as enterprise architecture
models, need to cover multiple enterprise areas. Thus, enterprise architecture management
is a complex process that needs granular and up to date information from various domains.
Support from automation is therefore welcome to facilitate accurate and timely decisions.

Some authors have studied the requirements for automation in enterprise architecture
management. Farwick et al. [6] investigated the requirements for architecture model
maintenance through surveying. The authors found that the respondents were not happy with
the amount of enterprise architecture items covered in the enterprise architecture repository.
For collecting more items in time, automation was deemed important. The respondents
prioritized correct data granularity, consistency, and being able to identify the source of
data. Nowakowski et al. [8] found in their enterprise architecture management requirements
study that optimal tools need to support heterogeneous data because enterprise data are
available in different forms and spread over multiple repositories.

Various types of data are available for automation. Farwick et al. [26] looked into
some potential information sources, measuring the data quality of the sources through
actuality, completeness, correctness, and granularity. The most vital data sources for
automatic data collection in an enterprise are found to be existing databases (including
configuration management database), sensors in business process engines and application
servers, and project portfolio management tools. The main participants in the process of
model creation are data providers, domain experts and enterprise architects [27]. Given the
studied requirements and the multitude of available data sources, it would be preferable if
an automated modeling solution uses more than one data source.

There have been attempts to generate models automatically from available data. Farwick
et al. [28] propose a semi automated way of maintaining enterprise architecture models using
technical interfaces and humans. The technical interfaces are assumed to be web services and
the data used should be in a machine readable format. Alegria and Vasconcelos [29] propose
a framework for IT architecture verification using passive network traffic analysis. The
framework uses logical inference rules to infer facts about the architecture. The framework
is implemented as a prototype and applied to a case study. The framework uses only a single
data source and adding additional ones is listed as future work. Buschle et al. [3] generate
an IT architecture model with the modeling language CySeMoL. The model is created by
mapping Nexpose2 vulnerability scanning results to the CySeMoL metamodel. Holm et al.
[4] use a similar data set to populate an ArchiMate based enterprise architecture model.
Both approaches use a single data source and leave some metamodel entities uninstantiated.

Veneberg et al. [30] propose a method to match operational data with enterprise
architecture objects to support better decision making. The proposed method is suitable for
creating enriched enterprise architecture models with six phases to solve a specific business
problem. Enterprise architecture and operational data are required as input to the proposed
solution. However, the solution does not describe how to do model-to-model transformations,
which are important for model reuse and have been deemed an important aspect of model
based system engineering by some authors [31]. Veneberg et al. regard model-to-model
transformations as future work.

Hinkelmann et al. [32] propose a new paradigm for the alignment of IT and business.
In their approach, the alignment is done continuously in an agile manner. Hinkelmann
et al. write that engineering an agile enterprise requires continuous design and redesign.
Their approach is a version of the Plan-Do-Check-Act cycle. Enterprise models are
used for identifying the adaption needs and for supporting change implementations. The
2 https://www.rapid7.com/products/nexpose
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authors combine machine interpretable ontology models with human interpretable graphical
enterprise architecture models. They use Kühn’s patterns [33] for integrating different types
of metamodels. We use these patterns to create transformation mappings between different
model languages for the data source and the model adapters.

To summarize, existing attempts to automate modeling have not attempted automated
and generic multi-source multi-model creation. Moreover, some attempts have not covered
model reuse at all and others have left parts of the metamodel uninstantiated. Many have
used only one data source. In the proposed framework the authors of this article address
these issues.

2.2 Conflict Resolution and Evaluation of Data Sources

If data are collected from multiple heterogeneous data sources, information about the same
object may differ between the data sources. This leads to conflicts that need to be resolved
when the data are being merged into a single set. There are various strands of literature
available on the topic, ranging from database schema matching to truth discovery.

Rahm and Bernstein [13] studied automatic schema matching, which is a basic problem
in data integration of heterogeneous data. They claim that the structure and terminology
of two schemas needs to be reconciled in order to integrate into one. Rahm and Bernstein
propose a taxonomy that explains common schema matching techniques. The authors write
that a match is possible for individual elements but also for combinations of elements.
They also mention that most schema matching algorithms rely on auxiliary information,
like dictionaries, previous decisions and user input. The authors stay on a theoretical level
and write that hopefully their ideas are useful for future implementations.

Haas et al. [34] study how to integrate diverse data from multiple sources where the
data from each source is represented differently. The approach centers around database
middleware systems. They conclude that for integration the data structure needs to be
changed and the data must be cleaned so that duplicates and errors are eliminated. The
authors combine schema and data transformation as a uniform mechanism to achieve
data integration from multiple sources. Rundernsteiner et al. [35] survey how to integrate
data from changing information sources. They find that data warehouses offer flexibility
in a variety of environments, which could be monolithic, distributed or open ones. Data
warehouses are built to handle autonomy, heterogeneity, and dynamicity of data sources.
Tools such as filtering and merging of data from individual sources are used through a
middle layer. In this type of integration approach, schema and interface changes are common.
Our approach follows the basic principles described here, such as data cleaning and schema
transformation, and the data are stored in a central database, although not a relational one.

Halevy et al. [36] survey bodies of work on data integration in large enterprises. They
describe a multitude of different approaches such as automated schema mapping using
linguistic similarities and overlaps in data types, schema mapping with machine learning
based on a mediated schema, reconciling data on the instance level by automatically
detecting references to the same object, adaptive query processing over unified architectures,
model management that is using algebra for manipulating mappings and schemas, and
semi-automatically generating semantic mappings for data integration systems. The authors
conclude that data integration is a necessity and needs to be part of an organization’s
infrastructure. The work provides references to relevant methods, some of which have been
tested, e.g. model management for the proposed automated modeling framework.

Data provenance techniques are seen as a way to reduce ambiguity in data integration
and enable data reuse by multiple authors. Simmhan et al. [37] propose a taxonomy of data
provenance characteristics and demonstrate its use on scientific workflow approaches. Glavic
et al. [38] present a categorization scheme for provenance models by surveying the existing
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approaches. They write that provenance is related to data annotation and temporal data
management and versioning. Cheney et al. [39] describe three main database provenance
notations and compare their applications in confidence computation, view maintenance and
annotation propagation. Our framework builds on simple data annotation and temporal
versioning to reduce ambiguity in data integration.

Dayal et al. [40] look at how data from heterogeneous and distributed data sources is used
for business intelligence. The work centers around a data integration pipeline, which needs
a lot of manual effort when implemented using extract-transform-load tools. The authors
find that traditional extract-transform-load tools do not provide support for collecting
business requirements and fail to support optimized designs that meet quality and correctness
requirements. The authors propose a layered methodology for the data integration flow life
cycle to facilitate the design and implementation of optimal flows. The work is theoretic and
addressed to the community at large.

While data warehouse based approaches focus mainly on data transformation and merging,
there is also research directed at conflict resolution that considers the characteristics
of data sources in a probabilistic and dynamic way. Some of these approaches look at
the trustworthiness of the data sources and credibility of the data in conflict resolution.
Truth discovery has emerged as a field to integrate multi-source noisy data. Li et al. [18]
propose a framework to resolve conflicts in heterogeneous data from multiple sources using
optimization. They claim that common approaches that are based on voting, where the
data with the highest number of occurrences is seen as correct, are not good enough. These
approaches do not take source reliability into account – if a data source is producing low
quality information, it will affect the end result negatively. Instead, Li et al. propose an
approach where a data source’s reliability is estimated – a truth discovery model. The model
is tested on weather, flight, and stock data. Adapting the model for more complicated conflict
resolution scenarios is described as future work.

Li et al. [41] present a literature review on truth discovery models. They describe the main
principles of truth discovery as the ability to estimate source reliability and the ability to
select credible claims based on the reliability of each data source included in the comparison.
For instance, if a claim is supported by sources with high reliability then the claim will be
assigned a high credibility value. The authors write that truth discovery algorithms make
different assumptions about input data, relationships between sources and objects. Several of
the truth discovery algorithms require data preprocessing before they can be used. Some of
the differences are, for instance, what is allowed in the input data like duplicates or objects
without conflicts. Most of the algorithms also assume that the input data are given in a way
that is comparable – standardized format and textual representation.

Merging heterogeneous data is a challenge. Data warehouse principles help to clean, filter,
and merge data, and data provenance principles help to reduce ambiguity about where the
data originate from. Truth discovery methods offer a way to keep track of the data credibility
in a probabilistic way and help to prioritize certain data sources in data conflict resolution
[19]. To the authors’ knowledge, no one has attempted to use truth discovery methods for
automated modeling as we are proposing in our framework.

3 A Framework for Automatic Model Creation

This section describes our proposed framework for automatic model creation. In Section 3.1,
a general overview is provided, where data warehouse support functions such as databases,
data cleaning, file conversions, etc. are described. The core of the method – the analysis
process – is then described in detail in Section 3.2.
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3.1 General Overview
The purpose of the framework is to support automatic model creation of IT architectures
using heterogeneous non-streaming data. The framework provides a structured way of
addressing conflicts and filling gaps in the modeling data captured in multiple data sources.
The framework relies on a common language and a common data structure. We define
the common language as the language that describes the elements that are stored and
the common structure as the way the elements are stored. The main components of the
framework and the process of setting up the framework are shown in Figure 2.

The main process of automation follows a series of steps, which are denoted with
corresponding numbers in Figure 2. While we see this study as an independent contribution,
it is a continuation of an earlier work [42].

Figure 2. Overview of the general process that consists of eleven steps

1. The proposed approach is designed to be tool, metamodel, and model independent.
The first step of setting up the framework is to decide what metamodels to use.
Each metamodel used with the framework needs to be represented by a specification,
which describes elements, associations between the elements, and properties. Three
combinations of tools and metamodels, used in the case study in Section 4, are
(i) Archi for enterprise modeling using ArchiMate, (ii) securiCAD by foreseeti for holistic
threat modeling and attack simulation, and (iii) the Eclipse Modeling Framework based
Fault-Tree Analysis (EMFTA)3.

2. The second step is to identify relevant data sources for modeling. These sources should
cover the architecture layers that are to be modeled and could, e.g. include configuration
data, network scanners, and inventory systems [26], [43]. The trustworthiness of the data
depends on the source type and collection frequency. For instance, configuration data
obtained directly from any system reflects a likely configuration of that system at that
point in time, while data obtained using network scanners are somewhat less credible due
to the dependence on a less accurate method called fingerprinting.A non-comprehensive
list of data sources is presented in Table 1.

3. The third step is to create (i) a common data structure describing the way the data are
stored and (ii) a common language describing the elements of the architecture layers of
interest. The common data structure is currently restricted to metamodels following a
general conceptualization of an object-oriented language, with classes, associations, and
properties. The common language is needed to standardize the input from different data
sources and can, for simplicity, be based on the most expressive metamodel of interest,
with the addition of any required elements from the other metamodels.

3 https://github.com/cmu-sei/emfta
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4. The fourth step is to set up a central database where the collected data are stored using
the common language and data structure. Hybrid databases meet our flexibility and data
scalability requirements. As data are written back to the database, consistency is ensured
by consistency checks.

5. The fifth step is to create adapters. The first type of adapter is for transforming data
from the format of the data sources to the common data structure and language (step 5
in Figure 2). An example of such a mapping is described in the case study section of this
article and has also been covered in previous work [3], [4].

6. The sixth step is to store the transformed data in a central database and repeat the
process regularly or whenever changes occur in the IT architecture, keeping temporal
versions.

7. The seventh step is to create a second type of adapter for transforming the common
language format to a specific model language for a model language based analysis. The
adapter changes the class names, the type and amount of properties the classes have, and
associations between the classes.

8. The transformed model is saved in the database separately in step eight.
9. The ninth step is to run the analysis in order to resolve conflicts in the data. Each

data source makes a set of claims about the architecture and these claims might confirm
each other or be contradictory. The analysis process includes the preparation of the data
(preprocessing) by transforming the data into individual claims about the instances of
metamodel elements, associations between the metamodel elements, and their properties.
Once the claims are created, it is possible to reason over the credibility of these claims
and the trustworthiness of the data sources making the claims using various algorithms.
This article focuses on solving the conflicts between the claims with a truth discovery
algorithm, as described in greater detail in Section 3.2.

10. The result of the analysis is a set of non-conflicting and unique claims about the
architecture as the model structure. These claims are written back to the database in
step ten, storing them for future analysis, consistency check and troubleshooting.

11. The final step is to create a file out of the analyzed data that can be imported into the
modeling tool(s) of interest. This means using the import functionality of the chosen tool.

Table 1. Examples of possible data sources for system modeling

Type Examples Type of data

Network scanners
Vulnerability scanners, network
topology scanners, packet
analyzers

Hardware devices, software,
vulnerabilities, network
communication

Enterprise
architecture
models

Business, ICT architecture
Models of organization and its
ICT architecture (in different
views)

System
management

Change, release, license
management, directory services System, network, process state

Events SNMP, syslog implementations System, network events

Security monitors IDS, IPS, firewalls, SIEM
solutions

System, network, process
security

3.2 Analysis

The core module of the framework is the analysis that is described in this section. The
purpose of this analysis is to resolve conflicts in the data collected from multiple sources
and to merge these into one coherent data set. Conflicts arise from the allowed multiplicities
of associations between different model classes as defined in each model specification. For
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instance, if the allowed association between some model classes is one-to-one and more than
one connected class value exists, there is a conflict that needs to be resolved. Associations
and conflicts are further explained in Section 3.2.2.

In the following parts of the article the terms ”claim”, ”entity”, and ”value” are used.
Claim means a statement that a source makes about some element, which can be about
a model object, model property or a model association. A claim consists of an entity –
the target that the claim is about – and the claim’s value. An entity is a unique model
element and the value is a data value taken from the collected data that characterizes a
particular model object, such as a network address for a host. We call this chosen data value
the default (primary) property value. Default properties and associations are included in
the entity representations implicitly (explained in Section 3.2.2). If there is more than one
property or association, then these too are represented as individual claims.

It is the data sources that make claims. These claims from the data sources are either
non-conflicting or conflicting. Imagine, for instance, that one source claims that an operating
system Windows XP is running on a host with a certain network address (for instance,
192.168.1.10). Another source might claim that the particular host is running a different
operating system – Windows 7. The target of the claims (entity) is, in this case, the operating
system of 192.168.1.10 and the value of the claim is the name of the operating system. If the
model specification we use allows only one operating system name at a time, the claims are
conflicting.

The analysis consists mainly of two parts: (i) creation of claims from the collected data
and (ii) resolution of conflicts between the claims. The first part is called “Model Data
Preprocessing” and the second – “Conflict Resolution” – as showed in Figure 2. The conflict
resolution part of the framework relies on a truth discovery algorithm, and is modular. Other
algorithms can be used and, for the sake of comparison, a naive algorithm based on common
sense is also presented. The framework supports one algorithm at a time.

The quality of data varies between sources and the reliability of each source can be seen
as an unknown variable that needs to be calculated. Truth discovery algorithms infer the
trustworthiness of a data source from the data it provides and the credibility of the data from
the reliability of the data source. There are different truth discovery algorithms available,
some of them are summarized by Berti-Équille and Borge-Holthoefer in [19]. The chosen
truth discovery model is Latent Credibility Analysis (LCA) [15]. LCA is a probabilistic
model that considers that a source can be fallible and thus provide wrong information. The
model assumes that the sources are independent. LCA relies on Expectation Maximization
as the main technique to calculate the probability of a claim to be true. The goal is to find
correctness expectation, maximizing latent variables using the reliability of the source making
the claim. The version of the algorithm, which has been implemented in the framework, is
presented as Algorithm 1. The algorithm compares the data from the sources and, based
on prior evidence, concludes that for given disagreement between the sources, one source is
right (trustworthiness = 1) and the other is constantly wrong (trustworthiness = 0). The
algorithm averages the trustworthiness of the values that each source provides. These values
are weighted by the certainty the source has in its assertions. The LCA algorithm can only
reason over mutually exclusive claims.

The input data for Algorithm 1 are the set of sources making claims (S), set of data objects
(strings) that the claims relate to (D), set of conflicting values (strings) for each of the data
objects (V ), confidence matrix of the values (W ) with confidence that each data source has in
its claim expressed as (ws,d). There is also the parameter of the prior claim credibility values
(β1), which can be a uniform scalar or set separately for each claim to resemble the beliefs
of the user. K denotes the number of iterations for calculation. The recommended number
of iterations is according to [15], around 100. The prior trustworthiness (Ts) and credibility
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Algorithm 1: SimpleLCA algorithm [19]
Data: S,D, V,W, β1,K
Result: S with Ts, Vd with Cv

1 Initialization: ∀s ∈ S : Ts ← .8;
2 while K > 0 do
3 repeat K−;
4 foreach d ∈ D do
5 Cdsum

← 0;
6 foreach v ∈ Vd do
7 Cv ← β1 ·

∏
s∈Sv

(Ts)
ws,d ·

∏
s′∈Sv̄

((1− Ts′)/(|Vd| − 1))ws,d ;
8 Cdsum

← Cdsum
+ Cv;

9 foreach v ∈ Vd do
10 Cv ← Cdsum/Cv;
11 end
12 end
13 end
14 foreach s ∈ Sv do
15 Ts ←

∑
v∈Vs

Cv · ws,d/
∑

d∈D ws,d;
16 end
17 end
18 foreach d ∈ D do
19 trueV alue(d)← argmax(Cv);
20 end

values (β1) should remain between 0 and 1. The confidence values (ws,d) should start from 0,
but have no upper limit. If the data source has full confidence in a claim, then that value is
1 or bigger, if the data source says nothing about the entity, the value is 0. The parameters
(β1, ws,d) influence the outcome of the calculations. They provide an opportunity to fine-tune
the input data according to the prior trust the user has in the sources. The outputs from
the algorithm calculations are credibility values (Cv) for each of the conflicting claim values
(Vd) and trustworthiness scores (Ts) for each of the data sources (S) making the conflicting
claims. The algorithm uses the functions trueValue and argmax. The role of the trueValue
function is to create a set of non-conflicting claims (represented with d), where each claim
has the highest possible credibility value (Cv). The function argmax is used to identify the
claim with the highest credibility value from each set of conflicting claims.

The preprocessing of data and conflict resolution are based on the following steps, which
are further explained in the coming subsections.

1. Obtaining transformed model data. A set with the claims from all the data sources is
obtained from the back-end database. The set contains likely conflicting claims.

2. Generating new unique identity values. Identical claims from different sources need the
same identity values when the data are merged, therefore identical claim values need to
be grouped and a common identity value needs to be assigned to each group.

3. Merging data into long strings. Preparation of claims for truth analysis by turning the
claims into long strings that represent claims with all the elements (classes) involved.
Long strings are needed for textual string comparison in the conflict resolution analysis.

4. Dividing claim data based on association multiplicities. The model specification is used
to classify elements based on their association types. One-to-one association means that
there is only one possible right value and one-to-many association means that many (all)
values can exist.

5. Generating negative values. Negative values are generated based on each source’s scope,
claimed classes, and user specified data source capability, in order for the probabilistic
truth analysis to express the likelihood that a value might not exist. For other types of
analyses (like naive) negative values are not needed.
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6. Separating conflicting from non-conflicting claims. Part of the analysis is identifying
conflicts in claims and solving them. Non-conflicting claims are used without any further
processing.

7. Running truth analysis on conflicting claims. Our framework uses truth analysis for
conflict resolution, but it also supports other approaches. To demonstrate this, a naive
approach is also introduced.

8. Storing the results. The results are stored in the back-end database so that they can be,
at any point of time, transformed into a model file.

3.2.1 Obtaining transformed model data. Before analyzing data, data first needs to
be queried from the database. Classes and their dependencies in the model specification are
used to construct the queries. For instance, a network zone might be defined only using the
class Network, while an operating system installed on a particular system is defined by the
sequence of connected objects Network, Host, SoftwareProduct and their values.

The associations between metamodel elements are represented in different ways, depending
on whether there is one or there are several named associations between the elements. If there
is only one, the association is first stored between the connecting metamodel elements and
later stored implicitly in long string format. We call the associations that are stored implicitly
default associations. Default associations are chosen based on if they define a metamodel
element in a unique way in connection to the associated elements. If there is more than one
association and many possible options for the default association, one association needs to be
chosen and defined in the model specification. The rest of the associations we call non-default.
Each non-default association is stored completely separately in a general group that contains
all the additional associations. The definitions of additional associations contain the source
and target information, and are linked to model objects through unique identity values (id
values). This unique identifier represents a group of identical claims originating from different
data sources. How this unique identifier is generated is explained in the next section.

Listing 1.1 shows an example of a service object from the group of service objects. The
service object is defined through a sequence of dependent objects Network, Host and Service.
For troubleshooting purposes, each dependent object contains an id and source information.

3.2.2 Generating new unique identity values. Multiple data sources are making
conflicting and non-conflicting claims. Each of the data elements stored in the database is
assigned a unique identity by the database. These unique identities are data source-specific.
For the purposes of merging the data, new unique identities are needed that are not data
source-specific, but are assigned based on the likeness of different claims. A method in the
framework that consist of two steps, fulfills this task. An activity diagram of the algorithm
that the method uses is shown in Figure 3.

The first task of the method is to filter out the elements of the claims that will be compared
for similarity (data source information is excluded) and then store them as a new data
structure. This structure uses keys that define related values (see key-value stores). Each
claim is stored with the database identity as the key. The second task of the method is to
turn the data structure elements around – keys into values and claims into keys. This way
the database identities (that are data source specific) are grouped based on similarity of
claims (entity, value, existence). Here the entity means the main target of the claim like a
service, the value means the value assigned to the entity like the name of the service, and
existence is a user assigned (or inferred from the data) likelihood that the claim exists. Then
the method replaces those claims with a new hash identity that is generated using database
id values.
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( ’ Network ’ , ’ Host ’ , ’ S e rv i c e ’ ) :
[ [ { ’ c l a s s ’ : ’ Network ’ ,
’ e x i s t e n c e ’ : None ,
’ id ’ : ’ co l l e c t edMode l /15291713 ’ ,
’ l a b e l ’ : ’ 1 92 . 1 68 . 10 9 . 0 ’ ,
’ source ’ : [ ’ 2017−04−25_Nmap ’ , ’ subnet ’ ] } ,
{ ’ c l a s s ’ : ’ As soc i a t i on ’ ,
’ t a r g e t ’ : ’ Host ’ ,
’ kind ’ : ’ Connection ’ } ,
{ ’ c l a s s ’ : ’ Host ’ ,
’ e x i s t e n c e ’ : None ,
’ id ’ : ’ co l l e c t edMode l /15293715 ’ ,
’ l a b e l ’ : ’ 1 92 . 168 . 109 . 21 ’ ,
’ source ’ : [ ’ 2017−04−25_Nmap ’ , ’ subnet ’ ] } ,
{ ’ c l a s s ’ : ’ As soc i a t i on ’ ,
’ t a r g e t ’ : ’ S e rv i c e ’ ,
’ kind ’ : ’ App l i ca t ion execut ion ’ } ,
{ ’ c l a s s ’ : ’ S e rv i c e ’ ,
’ e x i s t e n c e ’ : None ,
’ id ’ : ’ co l l e c t edMode l /15294101 ’ ,
’ l a b e l ’ : ’ 49157− tcp−ncacn_http ’ ,
’ source ’ : [ ’ 2017−04−25_Nmap ’ , ’ subnet ’ ] } ] , . . .

Listing 1.1. A service object with the associated objects as queried from the database

Figure 3. Activity diagram of an algorithm for grouping id values of identical claims
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’ 03 e21219b3 ’ : ( ’ co l l e c t edMode l /15294101 ’ , ’ co l l e c t edMode l /15288071 ’ ) ,
Listing 1.2. A group of id values of identical claims from different sources

( ’ Network ’ , ’ Host ’ , ’ S e rv i c e ’ ) :
[ { ’ c l a s s ’ : ’ S e rv i c e ’ ,
’ e x i s t e n c e ’ : None ,
’ fullName ’ :
’<<Network >>192.168.109.0<<Host >>192.168.109.21<< Serv ice >>
49157− tcp−ncacn_http ’ ,
’ id ’ : [ ’ co l l e c t edMode l /15291713 ’ ,
’ co l l e c t edMode l /15293715 ’ ,
’ co l l e c t edMode l /15294101 ’ ] ,
’ l a b e l ’ : ’ 49157− tcp−ncacn_http ’ ,
’ scope ’ : ’ subnet ’ ,
’ source ’ : ’ 2017−04−25_Nmap ’ } ,

Listing 1.3. A transformed claim about a service running on a particular host

Listing 1.2 shows an example of a group of id values of matching claims from different
sources. The key of the group is a truncated SHA-2 hash value that has been generated using
the id values, which are in the format collectedModel/.. . The first part of the original id
shows the database collection name and the second is the unique id that each data element
has in the database. There is no hash collision handling; this is planned as future work.

3.2.3 Merging data into long strings. The truth discovery algorithm is able to reason
over data claims that follow a certain format. The queried data need to be changed into
comparable text strings to be suitable for the truth discovery algorithm. The truth discovery
analysis needs strings that represent an entity about what claim is being made, the claim
itself (value), and then the source’s name that made the claim. The source, in our case, is
the source of collected data at a certain point in time.

An example of a transformed data element is shown as Listing 1.3. The example contains
a claim about a service running on a particular host. The string that is created with
this particular method is called fullName and contains classes and primary associations
(implicitly) and the primary property for each class.

3.2.4 Dividing claim data based on association multiplicities. Each data source
makes a claim about the value of some model object (entity). The claims made can be
mutually exclusive, meaning that at most one value in the set of claims about one entity
can be true. The claims can be also mutually non-exclusive, which means that all values
can be true or false independently of each other. For instance, a mutually exclusive claim
about a node is that it runs a certain operating system. So if one source says that the node
runs Linux and another source says that it runs Windows, both cannot be correct at the
same time (though dual boot allows the truth values to change over time). An example of a
non-exclusive claim is that a certain software application is installed. So if one source says
that the node runs Emacs and another that it runs Apache, there is no contradiction and
both can be true or false independently.

The exclusiveness of the claim depends on the association multiplicity between two model
classes. If the multiplicity in the metamodel is one-to-many, then this is sufficient for the
claims to be non-exclusive, for there could be many different objects (class instantiations)
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associated with the object at hand. As in the example above, many pieces of software could
run on a single node, and the multiplicity of the “runs-on” relation is thus one-to-many.
However, if the association in the metamodel is one-to-one, it is unfortunately not sufficient
to know that differing claims from different data sources are mutually exclusive, at least
not under a primitive string comparison notion of differing claims. For even though the
string-different claims “Windows” and “Linux” are mutually exclusive, the string-different
claims “Windows” and “Windows 7” are not. To solve this complication, a refined notion of
differing claims is needed. We believe that this could be accomplished using ontologies, and
aim to do so in future work. However, in this article, we disregard this difficulty and proceed
as if one-to-one multiplicities were sufficient to establish the mutual exclusiveness of claims.
For the data we use, this is a reasonable simplification, as will be seen in Sections 4 and 5.
However, there is no guarantee that this simplification will always be reasonable. It depends,
among other things, on the particularities of the data sources used and the system analyzed.

In conclusion, the task of this step of the analysis is to divide the model data into two
sets based on the multiplicities of associations defined in the model specification, where one
set contains exclusive and the other non-exclusive claims.

3.2.5 Generating negative values. There are truth algorithms that only can reason over
the credibility of mutually exclusive claims, like LCA. That means there needs to be one or
more subsets of mutually exclusive claims, where only one claim in each subset is determined
to be true. There are also algorithms that are not limited to mutually exclusive claims and
can find more than one claim in a set of claims to be true. The Latent Truth Model (LTM)
[19] is such an algorithm. The problem with the LTM type of algorithms is that they treat
all claims as mutually non-exclusive. While it is not possible to restrict LTM to reason over
the credibility of a mutually exclusive set in a way that only one claim is true, it is possible
to use LCA to reason over mutually non-exclusive claims with a small modification – the
addition of negative claims.

The authors of this article preferred to use a single truth algorithm to reason over the
credibility of the whole data set instead of using multiple algorithms simultaneously, because
the truth discovery models behind the algorithms are based on different assumptions and
their results might not be comparable. Therefore the simple version of the LCA is chosen as
the main truth algorithm. To be able to use the LCA algorithm, each mutually non-exclusive
claim needs to be treated as an individual claim that can have a positive or negative outcome.
For that purpose additional negative claims need to be added to the data set. Negative
claims can be added for each mutually non-exclusive claim that meets certain requirements,
which are explained below. While the generation of negative claims is needed to transform
a mutually non-exclusive data set into a mutually exclusive set, for consistency reasons,
negative claims should also be added to the already mutually exclusive claims.

A negative claim expresses the likelihood that an object (alternatively value) might not
exist. A negative claim must be made by a data source that has the potential to make it. To
be able to generate negative claim values for a data source, certain criteria need to be met.
The data source needs to have the capability to make a positive claim although it is not
doing it. The capability is defined first by scope (assigned to each source), which can have
two values – “system” or “subnet”. “System” means that the data source has knowledge only
about one particular system. Many configuration files fall under this category. “Subnet” on
the other hand means that the data source has knowledge about other nodes on a particular
subnet. For instance, network scanners. The second criterion is the data source’s capability
to make claims about the model class in question. If the source makes other claims about a
particular class of elements, then it is assumed that it has that capability. The third criterion
is the similarity of data sources. The data sources need to have similar capabilities to find
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information, to be able to qualify for negative claim making. For instance, such scanners
as Nessus and Nmap qualify for making negative claims about claims from Nexpose (see
Section 4.2). The similarity of the data sources included in the analysis needs to be decided
by the user and defined beforehand manually.

Tables 2 and 3 show how the entity values could be complemented in both cases.
For instance, that a router has a firewall installed (Case One) or a computer has
different software programs running on it (Case Two). A negative value designates the
non-existence/non-credibility of a particular entity. As explained, a negative value is
generated only if there is a data source that meets the three criteria.

Case One describes a one-to-one relationship where only one claim about an entity can
be true. However, as any claim means that the entity exists, the real question is if there is
any source that meets the criteria to claim it does not exist. In this case ‘Data source 4’
meets the criteria and thus a negative value is generated. Case Two describes a one-to-many
relationship. All of the claims can be either true or negative (designated as false), thus the
claims need to be treated like the entities in the first case. Simply put, the claims about an
entity are divided into smaller groups where each claim becomes an entity itself. If there are
data sources that meet the criteria to be able to make negative claims, the negative claims
are generated, otherwise the claim is considered to be true (non-conflicting) and moved to
the results data set.

Figure 4. An algorithm for generating negative values

The algorithm for negative value generation function is shown in Figure 4. The method
using the algorithm checks for each claim in a set of claims if there are other sources that
meet the three criteria (class, scope, source similarity) and are not making claims about the
target of the claim (entity) as shown in Tables 2 and 3. If the criteria are met and no claims
are being made, a negative claim with the new source information is generated.

3.2.6 Separating conflicting from non-conflicting claims. Once the negative claims
have been generated according to the rules explained in the previous subsection and the
format of the one-to-many claims has been changed, conflicting data (claims) need to be
separated from non-conflicting. The criteria for identifying a conflicting claim are (i) that
more than one data source is making claims about an entity (object of the claim) and (ii) that
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Table 2. Case One: one-to-one relationship where only one claim about an entity can be true

Entity A Data source Value of entity A Action
<Router>10.1.1.1<Firewall> Data source 1 Stateful firewall Exists
<Router>10.1.1.1<Firewall> Data source 2 Packet filter Exists
<Router>10.1.1.1<Firewall> Data source 3 Application firewall Exists
<Router>10.1.1.1<Firewall> Data source 4 Negative Generated

Table 3. Case Two: one-to-many relationship. All of the claims can be true or be negative
(designated as false)

Entities B, C, D Data source Value Action

<Host>WIN-012<Service>ArangoDB Data source 1 True Already
existing

<Host>WIN-012<Service>ArangoDB Data source 2 False Generated

<Host>WIN-012<Service>RabbitMQ Data source 3 True Already
existing

<Host>WIN-012<Service>RabbitMQ Data source 4 False Generated
<Host>WIN-012<Service>Support
Agent Data source 5 True Already

existing
<Host>WIN-012<Service>Support
Agent Data source 6 False Generated

these claims are different (have different values). The separation of claims into two data sets
can be done by simply comparing the claims made by different data sources with each other
(long string comparison). Ontologies could offer a more powerful comparison than just string
comparison, but this is not in the scope of this article.

What gets compared is an entity and the values of an entity. An entity is, for instance,
a certain operating system running on a host and the value of the entity is the operating
system’s name. If there are more than one non-identical claims about the host operating
system value, both claims are classified as conflicting. If there are no contradicting entity
values for a claim, then it is classified as non-conflicting and stored. The stored non-conflicting
claims are later merged with the claims from the truth analysis.

3.2.7 Running truth analysis on conflicting claims. Conflict resolution is possible once
the data has been preprocessed, transformed into claims, and sorted. The chosen algorithm
for conflict resolution is LCA, presented as Algorithm 1. However, other approaches are also
supported by the framework and, for comparison, a naive algorithm is introduced in this
subsection.

The naive algorithm is based on common sense. It does not support using prior probability
values to describe the data sets and does not support using negative claims. Therefore
only mutually exclusive claims can be included in the naive conflict resolution analysis and
mutually non-exclusive ones are treated as non-conflicting data. The goal for the naive
algorithm (see Figure 5) is to find, for each entity (object) of the claim, the most frequently
occurring value. If the most frequently occurring value cannot be determined because the
conflicting values occur equally often, then two other steps are possible. Firstly, the claim
from the most trustworthy source can be picked. The trustworthiness of a source is in this
case determined by dividing the total amount of matching values by the total amount of
conflicting values. These amounts are counted from the whole data set, not only from a
particular claim subset. If the scores for all the data sources making the particular claim are
the same, then instead a random value is picked.
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Figure 5. Activity diagram of naive conflict resolution

3.2.8 Storing the results. The last step in the analysis process is storing the results in the
back-end database. Before the results are written to the database, the truth discovery results
are merged with the non-conflicting data set. This way the chain of class dependencies can
be followed while storing the data. The storing of claims is done starting with the objects
that have the smallest number of dependent classes and gradually increasing the number.
For instance, all network zones are stored first, while the hosts connected to these zones are
stored in the next iteration. This means that the claims that depend on the existence of
some other claim can be excluded if the other claim is found to be negative. So, no host
information would be stored if the network zones they depend on are missing. The results are
stored in the database using the unique id numbers that are generated at the beginning of the
analysis process. This way the correct associations between model elements are guaranteed.

After the merged data have been stored in the database using the chain of dependence, the
data are now ready to be imported to the corresponding modeling tool. The stored results
can also be reused in future analysis processes as the ground truth.

4 Testing the Framework on a SCADA Environment

This section presents our implementation of the proposed framework and employs it in a
study of a SCADA environment. The prototype of the framework is available for download4.

4.1 SCADA Environment

The purpose of Supervisory Control and Data Acquisition (SCADA) systems is to monitor
and control large scale processes like industrial production, electricity distribution, or
building automation systems. SCADA systems offer a link between (i) the embedded software
in various sensors and actuators, and (ii) a remote operator control room. The typical
setup consists of a master station, Remote Terminal Units (RTUs), and a communication
system [44]. A master station (SCADA server) is responsible for communicating with
4 https://www.kth.se/nse/research/software-systems-architecture-and-security/projects/

old-projects/automatic-data-collection-and-modeling-1.922302
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the geographically dispersed field equipment. Data from the field is acquired through the
system part called Front End (FE). Human users operate the SCADA system through
a human machine interface (HMI) with different so called consoles. Operator consoles
are used by system operators for controlling the supervised process. Engineering consoles
(alternative name: maintenance consoles) are used for control system maintenance; database
and situational picture maintenance. RTUs are the sources of measurements and states for
a SCADA system.

The experimental setup was designed as part of the European Union FP7 project SEGRID5

and aims to represent the SCADA setup of a small electric utility. The central part of
the architecture is a SCADA system running on four servers. Two of the servers are the
main SCADA servers in a redundant setup that run on Red Hat Enterprise Linux. The
control system includes functions for remote real time data acquisition and remote control of
process devices. The servers also run electric grid specific tools for monitoring, control, and
performance optimization of the grid and historians to store historic process data. There is
a separate Windows 2012 Server for Active Directory and Kerberos6 based authentication.
The fourth machine, also Windows 2012 Server, has data engineering software installed and
an HMI. This machine is also set to perform the tasks of a FE. With the help of the FE
software the SCADA system regularly fetches measurements and sends control signals to
one destination which simulates a substation through a wide area network. The substation
is represented in the environment by an RTU.

The servers and the local network are running in a virtual environment, but the wide area
network and the RTU are running on physical hardware. The wide area network has been
set up using industrial wireless mesh routers. The network is separated using virtual local
area networks (VLAN)7. An open source pfSense firewall8 is routing and blocking the traffic
between different VLANs. The setup is shown in Figure 6 and summarized in Tables 4 and
5.

In Figure 6 DMZ stands for DeMilitarized Zone, EMS for Tropos Control Element
Management System, ERP for Enterprise Resource Planning system, RTU for Remote
Terminal Unit, and ICC for Inter-Control Center Communications.

The environment is representative of a small power utility and the software and equipment
run are designed for this purpose. The network environment has been segmented to different
functionality oriented zones to achieve conformity to real environments. A major difference
from a real environment is that the systems are not connected to any real power processes,
i.e. they have not been set up to control any cyber-physical system. However, the goal of the
article is to study data collection from systems and software (IT) environments, thus having
a working power system is not required for meeting this particular goal. Another difference
is that virtualization is used extensively here, however this does not drastically influence the
data collection either.

4.2 Data Collection in SCADA Setup
Three different types of data are collected for model creation: (i) configuration data obtained
from systems directly, (ii) data from network scanners, and (iii) network traffic. An overview
of the data collected and the methods used are provided in the remainder of this section.

4.2.1 Configuration data. The configuration data in the lab are collected from general
types of operating systems and network devices. The data set obtained from Windows
5 https://segrid.eu
6 https://web.mit.edu/kerberos
7 http://www.ieee802.org/1/pages/802.1Q-2014.html
8 https://www.pfsense.org/download
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Figure 6. A small utility SCADA environment setup

Table 4. Devices in the SCADA environment with short descriptions

Network zone Device Description
SCADA subnet Authentication server (AD) Domain controller and DHCP server

Data engineering server (DE) HMI, Frontend system
RTU Endpoint to substation
SCADA server A SCADA, NMS application, historian
SCADA server B SCADA, NMS application, historian

Office subnet ERP server Office application for resource
management

File server File server for data from SCADA
zone

Management Syslog Syslog server to consolidate logs
subnet Rapid7VA Vulnerability scanner Nexpose

Security server Network scanners and passive traffic
capturing

Tropos EMS Central management for Tropos
routers

Table 5. Network devices in the SCADA environment

Device Network zones Description

pfSense Management, office, SCADA Router and firewall between different
subnets

Tropos Wifi routers Management, SCADA,
substation

Substation wide area networks and
subnets

Vmware switches Management, office, SCADA SCADA, Office and management
subnets

HP Procurve switch SCADA SCADA subnet extension for
compatibility reason
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and Linux based operating systems include information about installed software programs,
running services, open ports, and configured users. The configuration data set collected from
the HP Procurve switch and the pfSense firewall gives an overview of the network zones and
management of IP addresses. Some of the devices in the lab use proprietary data formats for
storing configuration data and do not support exporting this data into a machine readable
format. This problem relates to, for instance, ABB Tropos9 routers. Table 6 gives a brief
overview of the methods used and data obtained.

Table 6. Collected configuration data and collection methods for Windows10 and Linux11

Operating system – Windows 2012 Server
Method PowerShell cmdlets (PS)

Data
Installed Software, running
services, local user accounts, open
ports

Operating system – Red Hat Enterprise Linux 7
Methods getent, netstat, systemctl, yum

Data local users, open ports, services,
installed software

Firewall – pfSense
Method Backup file

Data interfaces, IP address ranges,
running services, firewall rules

Switch – HP Procurve
Method Running configuration file
Data VLAN ports and IPs

4.2.2 Scanner data. Three different scanners are used for examining the SCADA
environment. Two vulnerability scanners, Nessus12 and Nexpose13, and the network scanner
Nmap14. We run Nexpose on a separate virtual machine, Rapid7VA, while Nmap and Nessus
are installed on a Microsoft Windows server that has access to all the network zones. The
scanners use a variety of methods for obtaining information about the system scanned,
including pattern recognition. They are able to authenticate themselves to certain systems
in order to obtain detailed configurations. The information collected includes installed
software, the patch level of the software, open ports, existing vulnerabilities, and potential
configuration problems.

4.2.3 Other data. Two network capturing tools are used to gather network traffic
information. Wireshark15 can capture network traffic, allows filtering based on types of
protocols, and can follow sessions. p0f16 is a tool that does passive network traffic monitoring
to identify the operating systems on both endpoints of a TCP connection. The tool can detect
network address translation and connection sharing.
9 http://new.abb.com/network-management/communication-networks/wireless-networks

10 https://technet.microsoft.com/en-us/library/dd772285.aspx
11 https://highon.coffee/blog/linux-commands-cheat-sheet
12 https://www.tenable.com/products/nessus-vulnerability-scanner
13 https://www.rapid7.com/products/nexpose
14 https://nmap.org
15 https://www.wireshark.org
16 http://lcamtuf.coredump.cx/p0f3
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4.3 Applying the Framework
The proposed framework is applied to find answers to the two research questions posed in the
introduction. We study whether the framework allows to automate modeling when multiple
heterogeneous data sources are needed and if the automation can be done in a way where
data source trustworthiness is tracked in conflict resolution. For this, three different tools for
holistic systems and software (enterprise) modeling are employed.

4.3.1 Tools and metamodels. For the study three different metamodels are used
– ArchiMate17, Eclipse Modeling Framework based Fault-Tree Analysis (EMFTA)18 and
securiLANG19. A short introduction to each metamodel is provided below.

ArchiMate is a technical standard from The Open Group for the description, analysis, and
visualization of interconnected enterprise architecture domains (e.g. business, application and
technology). The technology domain which is the main focus in this study (together with
software and data), deals with an enterprise’s hardware and communication infrastructure.
There are commercial and open source tools available that implement ArchiMate, e.g.,
BiZZdesign Enterprise Studio and Archi. In this study we use Archi20.

EMFTA is a simple fault tree analysis extension for Eclipse. The extension supports fault
tree probability analysis and visualization, and it is open-source.

securiLANG is a metamodel for quantitative threat modeling and attack simulations, and
is implemented in a modeling tool called securiCAD21. It has its foundation in more than 10
years of dedicated research conducted by a full team of researchers at KTH (Royal Institute
of Technology, Sweden). The core concept in securiCAD is the use of attack graphs, which are
rendered under the modeling surface. The user models the software and systems architecture,
then the tool simulates all possible attacks. The tool has built in statistical expertise on how
hard it is to make a specific type of attack, to a certain type of system, given the security
features of this system. The key measure is Time-To-Compromise (TTC).

EMFTA and securiCAD are tools for simulation and unlike Archi they need evidence from
the real world to run the simulations. This means that these two tools have additional data
needs, over and above what is collected in the following case studies. The main role of Archi
is to document existing architectures and communicate ideas for new ones.

4.3.2 Study: common language. The data collected need to be stored in a common
language to resolve conflicts. This common language expresses the details of the models in
consideration.

The three metamodels chosen for automatic model creation allow to analyze and document
the systems architecture of and data flows within an organization. Thus, the common
language we have developed for the implementation of the framework represents those
elements. It describes IT architecture components like networks, hosts, and software, but
also management processes, data stores and data flows. The language is developed by
first identifying the most expressive metamodel of interest, which is securiLANG. After
all the securiLANG elements are captured in the common language, the resulting language
is compared with the ArchiMate and the EMFTA metamodels to see if it covers those
metamodel elements as well, and is improved.

Figure 7 shows some of the classes and kinds of the common language. The common
language is implemented in a hybrid database and follows the common data structure.
17 http://pubs.opengroup.org/architecture/archimate2-doc
18 https://github.com/cmu-sei/emfta
19 https://www.foreseeti.com/products
20 https://www.archimatetool.com
21 https://www.foreseeti.com/products

40



Figure 7. Common language of the three chosen metamodels for the study of the SCADA
environment

4.3.3 Data Source Adapters. A total of eleven different adapters are used to import the
data from the data sources in the lab to the database. The imported data are transformed
to the common language. Some sources have data available at multiple time points, but only
the most recent is used for each source.

4.3.4 Database. A hybrid database system called ArangoDB version 3.2 is used for storing
the collected data. The choice was made based on functionality, licensing terms and software
bugs encountered during implementation.

The data in the hybrid database are stored in collections as vertices and edges and can be
traversed as a graph22. ArangoDB has a built in simple graph visualization interface, which
can be used for quick quality control of the stored data and discovering patterns in the data.
Figure 8 shows the graph visualization of some of the data collected (figure size limited by
the user interface). In the figure different element classes have different colors.

4.3.5 Analysis and Results. This section describes the creation of the three models that
were introduced in Section 4.3. This activity involves model conversion, analysis and model
import (see Figure 2). The end goal is to get a separate IT architecture model for each of
the three modeling tools, securiCAD, ArchiMate and EMFTA.

The purpose of the model conversion part of the framework is to prepare the collected
data set for model specific analysis. The model conversion starts with the transformation
of the data set that is in common language to the three model languages in focus,
securiLANG, ArchiMate and EMFTA. For that purpose model language specific model
adapters need to be configured and run. The model adapters use model specifications
to support the transformation process. A model specification contains the definitions of
elements, associations, and dependencies between the elements. The central elements, for
instance, in securiLANG are networks and hosts. A Host object typically has connections to
22 https://docs.arangodb.com/3.2/Manual/Graphs
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Figure 8. Collected data as a graph. Each vertex represents one common language element. The
colors show different common language classes

other objects such as Network, various types of software, and AccessControl. Unique Hosts
are defined through the chain of dependency including the connected Network object while
instances of software are defined through connections to Host objects.

The transformation logic of all three model adapters follows Kühn’s integration patterns.
The adapters are implemented in a way that there is a separate function for the
transformation of each of the model classes. For some common language elements there
are direct equals, so the “Reference pattern” can be followed. In securiCAD’s case
Network objects belong to this category. For other model elements transformation rules
(“Transformation pattern”) are needed in order to transform multiple common language
elements to a single metamodel element. For instance, Hosts are created combining the
common language elements Interface and Node. There are also elements that do not always
have direct equals like the class Software Product. It would be possible to generate Software
Product elements automatically, as they represent the static versions of software instances,
but that would skew the truth analysis results. Such a generation step should therefore, if
at all, be done after the conflict analysis has taken place.

Because of the limited expressiveness of the ArchiMate model, the ArchiMate specification
needs to be customized – two different versions of the class System Software are needed in the
model specification. This is because System Software can represent both operating systems
and installed software. The need comes from real life. Due to the way the lab has been set up
we need to restrict the number of operating systems that can be modeled on one host. There
are no restrictions to the amount of software a host can run, however. Thus, a device can be
connected to only one System Software element that expresses the operating system software
running on it while it can be connected to multiple System Software elements that express
other installed software. Another issue is that some of the ArchiMate model elements can
express logical groups of other elements. For instance, a Node can express the logical grouping
of a Device and System Software. Therefore Node elements should be generated when Device,
System Software and associations between them are known. To avoid this element generation
influencing truth discovery analysis, Node elements are generated after the truth discovery
conflict analysis has taken place. The reasoning behind adding new elements is based on
logical deduction. While there is a possibility of accuracy problems, based on the authors’
experience of using the framework, no such problems were evident.

The EMFTA metamodel contains a limited amount of elements designed only for
availability modeling and the metamodel lacks technology domain knowledge. Therefore, the
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technology layer elements from the common language are used to complement the EMFTA
model. The model adapter transforms the data from the common language to the EMFTA
model for analysis. The EMFTA adapter makes no changes to the common language.

The purpose of the analysis part of the framework is to solve conflicts in the model specific
data sets. Thus, the analysis part of the framework needs to be configured to support each
metamodel. The analysis needs to use a correct model specification together with the right
multiplicities and class names, and the analyzed data needs to be stored in the designated
database collections. For truth discovery analysis, the capability of the data sources to negate
each other’s claims on certain conditions needs to be configured as well. The capability
configuration answers the questions like the following: If network scanner Nexpose claims
that a certain host in a certain network zone exists, could Nessus, having scanned the same
network zone, but not having detected that particular host, reasonably claim that the host
in fact does not exist?

Once the analysis process has been configured the framework can be run, which means
first running the preprocessing to transform data into claims and separate conflicts. The
preprocessing is analysis algorithm specific. The framework supports two different algorithms
(truth discovery, naive) for conflict resolution as alternatives to each other. Both algorithms
are described in Section 3.2. The truth discovery analysis can be fine-tuned with parameters.

During the preprocessing of the data for the truth analysis uncertainty is factored in as
negative claims. No negative claims are used for the naive algorithm. After preprocessing,
conflict resolution can be conducted. Eventually, the resulting data set from either of
the analysis methods is merged with the non-conflicting data that was separated during
preprocessing and then stored in the database as a model specific merged data set. The
merged data sets from the database can then be imported to the modeling tools.

Table 7 shows the total number of claims processed for each of the three models using
the two different conflict resolution mechanisms; naive analysis and truth discovery analysis.
Two Venn diagrams in Figure 9 show how the values from the table are related for both the
naive analysis and the truth discovery analysis using the securiCAD claims as an example.

Table 7. Claims from all the data sources included in the analysis. N/A denotes Not Applicable

securiCAD ArchiMate EMFTA
Name Naive Truth Naive Truth Naive Truth
Initial claims 1477 1477 1283 1283 1045 1045
Generated negative N/A 1334 N/A 1302 N/A 1249
Conflicting claims 84 2201 82 2138 0 1983
Non-conflicting claims 1393 610 1201 447 1045 311
Conflicts solved claims 21 738 20 705 0 637
Final non-negative claims 1414 846 1221 671 1045 448

The row “Initial claims” in Table 7 shows the number of all original claims included in
the analysis. “Generated negative” shows the amount of the negative claims added to the
truth discovery analysis to factor in uncertainty. “Conflicting claims” shows the total number
of conflicting claims that need to be analyzed. “Non-conflicting claims” shows the amount
of claims that are not included in any conflict resolution, because this subset contains no
conflicts. The number of conflicts solved with either of the algorithms is shown as “Conflicts
solved claims”. The total number of elements that can be used to create the model, including
implicit and explicit associations, is shown as “Final non-negative claims”. For the truth
discovery analysis, this means that the negative claims that are found to have high credibility
values are excluded together with the claims they negate.
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Figure 9. Venn diagrams of securiCAD claims in naive and truth discovery analysis

The conflict resolution results for the three studied models are different, not only because
of the two different conflict resolution methods used, but also because of the difference in the
number of included model elements (see Tables 8, 9, 10) and the nature of the associations
between those elements. The truth discovery based conflict resolution could be run on all
three claim sets while the naive could be run only on securiCAD and ArchiMate. The naive
method could not be used for EMFTA because no conflicts in the data are identified due
to the nature of associations in the model. The problem is that the metamodel specification
does not restrict associations for the elements that are included in the model creation, so all
the associations of the captured elements are one-to-many and thus there are no conflicts in
the data. According to the specification, everything captured can exist.

Table 8. Number of different model objects created using naive and truth analysis in the securiCAD
modeling case

Class name Non-merged Naive analysis Truth analysis
AccessControl 6 4 4
Client 130 130 125
Dataflow 122 122 62
Host 94 46 24
Network 41 20 2
Protocol 122 122 62
Router 5 5 3
Service 681 661 252
SoftwareProduct 88 26 21
UserAccount 67 66 66

Starting with the naive analysis, the conflicting data sets of securiCAD and ArchiMate
include mostly operating system names. The naive analysis of the two data sets shows that
very few conflicts can be solved by simply counting occurrence frequencies. For securiCAD
model there are 84 conflicts for 21 claims. For ArchiMate there are 82 conflicts for 20
claims. For both models, only 5 claims could be decided using occurrence frequency. A
simplistic approach to calculate trustworthiness scores for the involved data sources helped
to solve the rest of the naive conflicts. The third columns in tables 8 and 9 show the count
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Table 9. Number of different model objects created using naive and truth analysis for the
ArchiMate case

Class name Non-merged Naive analysis Truth analysis
CommunicationPath 122 122 92
Device 99 46 39
Network 41 20 20
SystemSoftware 811 791 329
SystemSoftwareUnique 88 26 18

Table 10. Number of different model objects created using naive and truth analysis for the EMFTA
case

Class name Non-merged Naive analysis Truth analysis
interface 99 46 15
node 94 46 14
softwareInstance 811 791 289
zone 41 20 3

of created elements using the naive analysis. No uncertainty is factored in and thus the
data sets are very similar to the original data. This creates some problems as Wireshark,
for instance, claims 20 different networks, 16 of which are not claimed by any other data
source. Wireshark sees those networks because the SCADA software on the servers is trying
to connect (surprisingly) to some previously configured internet addresses. The number of
application software programs in the model is also inaccurate because different data sources
have different naming conventions and therefore some software is represented multiple times.

Unlike the naive analysis, the truth discovery analysis uses probabilistic calculations. The
results from the trustworthiness analysis of the three models are claim credibility and data
source trustworthiness scores. Trustworthiness scores for the models are shown in Table 11,
and are explained in the following paragraphs.

Table 11 shows the trustworthiness scores for three types of data sources; (i) for network
scanners, (ii) for network traffic capturing and filtering tools and (iii) for data sources for
individual systems. Out of the three types, the network scanners provide the easiest way
to gather wide scale system information. The scanners have the largest number of claims
about the IT architecture as compared to other data sources and also the largest number of
negative claims generated for truth discovery. The number of negative claims is large because
the framework is configured to treat the three scanners as equally capable if network zone
and class restrictions are met. All three scanners pick up network zone, host and software
information. However, out of the three Nessus has the lowest scores for all three models
(0.35/0.36/0.48). Looking at the data sets, it is apparent that the data from Nmap and
Nexpose are more similar to each other in terms of conventions for naming services and
operating systems than to Nessus. Nexpose’s trustworthiness score is highest for the EMFTA
analysis (0.81) very likely because the EMFTA model mostly contains network information
(zones, nodes, network interfaces) and Nexpose detected slightly more network zones and
hosts than did Nessus and Nmap.

Wireshark and p0f can capture network traffic between hosts and p0f in some cases is also
able to detect the version of an operating system running on a detected host. p0f has higher
trust scores (0.97 and 0.98) for securiCAD and EMFTA model than Wireshark (0.02 and
0.06), but for the ArchiMate model the scores are the other way around. Wireshark has high
trust score (0.99), while p0f is assigned a very low trust score (near 0). The difference can
be explained by the differences between models and particularly by how the different models
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use different subsets of the data sets generated by p0f and Wireshark, leading to different
conflict patterns in each models. Thus, in addition to the network and host information
the securiCAD model also uses information from p0f and Wireshark about data flows and
protocols, whereas Archimate only uses information about data flows. In the EMFTA model,
however, data flows, protocols and related associations are not used at all. This difference
in information usage is also evident from the amount of conflicting claims for the two data
sources.

Table 11. The table shows data source trustworthiness scores (“Trust”), number of claims in the
trust analysis (“Claims”) and the amount of negative values added (“Negs”)

securiCAD ArchiMate EMFTA
Data source name Trust Claims Negs Trust Claims Negs Trust Claims Negs

Network scanners
Nessus 0.35 262 310 0.36 262 310 0.48 258 313

Nexpose 0.60 125 484 0.62 125 484 0.81 84 487
Nmap 0.86 203 369 0.82 203 369 0.67 204 367

Network traffic capturing and filtering tools
p0f Sec. serv. 0.97 150 27 0 120 25 0.98 61 21

Wireshark Sec. serv. 0.02 30 144 0.99 28 114 0.06 27 61
Data sources for individual systems

etc–passwd SCADA A 1.0 1 1.0 1 1.0 1
etc–passwd SCADA B 1.0 1 1.0 1 1.0 1

HP–Procurve 1.0 1 0.99 2 0.99 2
netstat SCADA A 0.02 50 0.02 50 0.02 50
netstat SCADA B 0.03 33 0.03 33 0.03 33
pfSense_Config 0.4 3 0.71 5 0.76 5

PS–Get–User AD 1.0 2 1.0 1 1.0 1
PS–Get–User DE 1.0 2 1.0 2 1.0 3

PS–Win32_Prod. AD. 1.0 2 1.0 2 1.0 3
PS–Win32_Prod. DE 1.0 1 1.0 1 1.0 1

Configuration data for individual systems are useful for the creation of the models because
of their high accuracy. This is also evident in the truth discovery analysis. Windows and
Linux configuration sources provide information such as the names of the installed software
and open network ports and information about user accounts. The analysis of the Windows
and Linux configuration data shows that few other sources in the lab are able to provide
such detailed information about specific functionalities in a single system. This detailed
information, which also has limited scope, thus causes little conflict in our setting. PowerShell
cmdlets and etc-passwd as data sources get high trust scores for all the models in the
analysis (1.0). Netstat is the only exception because it is the source of information about
services running on hosts. Some of the service information it provides conflicts with the
service information from Nessus, Nexpose and Nmap. The conflicts are in many cases due
to differences in naming conventions. This difference causes the lower scores for all three
models.

There are two sources of network configuration data; a pfSense firewall and an HP Procurve
Switch. Both provide information about the network configuration of the lab, including
VLANs, but also device settings like name and network address. The HP switch provides
largely unique information and therefore almost none of its data ends up as conflicting,
entailing high scores (0.99). As pfSense provides similar information to other sources like
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Wireshark and p0f and the network scanners, there are more conflicts and these result in a
lower score.

A concluding remark on the truth analysis is that the number of elements created for each
of the three models differ because, due to the model specification differences, the conflicts
from the data sources vary.

Most of the configuration files are taken from the hosts in two network zones. Network
scanners Nmap and Nessus are also only able to scan hosts on those two network zones (due
to a firewall misconfiguration). The network aspect of securiCAD and EMFTA results are
similar to the actual lab setup, where the most common hosts on the best known network
zones are detected. It is more difficult to judge the open ports on the hosts as the tools used
compete with each other and no ground truth is known.

Once the analysis process has been successfully finished, it is time for the model import
part. The purpose of this process is to import the merged data into the modeling tools. In
all cases the import file generator needs to write an XML file that can then be opened as
a model. Figure 10 shows selected parts of the three imported models, since (for obvious
reasons) the entire models are too big to visualize in one or even three figures.

Figure 10. The securiCAD (1), Archi (2) and EMFTA (3) models as created using the framework

5 Discussion and Future Work

The following subsections discuss the work in relation to the research questions, effort
required for using the framework and the metamodels’ coverage, choice of the truth algorithm
and future work.

5.1 Extensible Automated Modeling Using Heterogeneous Data Sources
We raised two research questions: The first goal was to investigate how automated modelling
can use multiple heterogeneous data sources in an extensible manner. The second one was
how to keep track of the trustworthiness of the data sources when merging data. As a
result of a literature review and extensive testing, a framework is proposed and a study with
three metamodels is conducted to demonstrate the viability of the approach. This subsection
discusses the two research questions raised in the introduction.

How can automated system modelling use multiple and heterogeneous sources in an
extensible way?
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A previous study showed that it is possible and preferable to collect data for automatic
modeling [4]. The authors use data from one single network scanner to generate an ArchiMate
model. However, there are other useful data sources that can be employed for model
generation. The possibility to merge data from multiple sources is not explored in the
previous work. This is instead the focus of our current study. It leads us to the question
of the extensibility of the approach, which we define as the support for multiple changing
heterogeneous data sources and the support of multiple metamodels.

In our study there are a variety of data sources used that have different degrees of
granularity and credibility. There are firewall and switch configuration files that describe
particular devices in an idealized way (assuming that a device works correctly) and then
there is information from network scanners. The methods that network scanners use to
obtain data can in some cases be considered less trustworthy (like fingerprinting) and also
disruptive. Obtaining individual configuration files takes more time and effort than setting
up network scanners, but configuration files can contain more precise information.

The metamodels considered in this article are very different in terms of complexity. For
instance, securiCAD is a graph based approach that has a very elaborate structure with
many classes and rules for how these relate. EMFTA, on the other hand, has only a handful
of classes used to build a tree structure that can be applied in different contexts. To use
EMFTA for system modeling one also needs to define the dependencies between all the
systems. Given the varying complexity, all three metamodels have different data needs, but
it is difficult to see how any one single data source would suffice for instantiating any of them.
Moreover, different models might be required for enterprise decision support. Therefore, it
can be concluded that by supporting model generation of multiple models based on multiple
heterogeneous data sources, the authors have improved the previous approach.

The quality of the output models depends on the quality of the input data. Heterogeneous
data comes in different representations and coverage. Data from different sources can be
conflicting and these conflicts need to be resolved during a merging process. For conflict
resolution it is important that data from different sources is comparable. Therefore, steps
need to be taken to make sure that the same properties are used for describing the same
elements and that data are on the same formats.

In order to make the collected data comparable, they are transformed into sets of
dependent claims. These claims are eventually transformed into long textual strings so that
they can be compared with each other and so that their occurrences can be counted. This
method is successfully applied to all three metamodels in the study. However, only fairly
simple data warehousing techniques are used to clean and standardize the data and this
affects the results. There are likely multiple representations in the data for the same object.
Another issue is that it is difficult to classify some model elements, such as software. Both of
these problems need external help to be solved, e.g. using an ontology. Some missing values
in the data are approximated. One of the reasons for this is that the data sets are stored as
a graph in the database. Other reasons are the dependencies of model classes and the need
to construct long strings for comparison. For instance, if a scanner like Wireshark says that
there is a data flow then it is also assumed that there is a network(s) where this data flow
travels and hosts with software allowing this flow.

The database facilitates consolidating similar data and tracing back original claims.
Tracing back original claims becomes possible by storing data sets after each transformation
and using the same database-assigned identification numbers for claims at each step of
the process. These identification numbers are needed to support data provenance. The
identification numbers are kept even after the conflict resolution and data merging. The
identical claims from different sources are grouped and each group is assigned a new
identification number and the source info is discarded.
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In conclusion, we can say that the tests with the framework show that heterogeneous data
can be merged in an extensible way to create multiple models. The data sets first need to
be transformed to a common representation and granularity level and stored in a database
for further analysis. Then resolution of conflicts in the data becomes possible.

How can trustworthiness of multiple and heterogeneous sources be included in automated
system modelling?

Data warehouses are often used for integrating distributed information sources. A data
warehouse is very labor intensive to set up and to our knowledge it is difficult to track
(and express) the trustworthiness of different data sources. Truth discovery is a mature
field and its probabilistic methods, which mostly have been applied in a World Wide Web
context, can also be used in an enterprise to automate modeling. For the sake of comparison,
the authors developed an additional simple non-probabilistic method, which we call the
naive approach, to track the trustworthiness of data sources. The naive approach counts
occurrences of identical textual values (strings) and uses those counts to calculate scores for
data sources. The idea for developing the naive approach is to evaluate the usefulness of
truth discovery as compared to more conventional frequency analysis.

The results show that a naive approach using frequency based analysis for conflict
resolution has limited use. The naive approach can only handle mutually exclusive claims
and cannot express the reliability problems a data source could have. In the securiCAD
and ArchiMate cases only approximately 20% of the conflicts can be resolved with simple
frequency analysis, where the most frequent value is identified. In the remaining cases the
naive algorithm has to resort to alternative methods. A probabilistic approach is preferable if
there is doubt about the trustworthiness of data sources. A truth algorithm, such as LCA, is
able to calculate the trustworthiness of data sources and the credibility of claims even if there
are only a few frequent values. The truth discovery algorithm that was chosen calculates the
probability that a data source asserts the correct claim, while prioritizing claims from the
data sources that have the most matching claims.

Another important benefit of using the truth discovery algorithm over the naive one is
that it allows to use prior values and factor in uncertainty with negative claims. As a result
of using negative claims, some data get excluded from the final results. These are the claims
that originate from the data sources that have been attributed the lowest trustworthiness
values and that have the highest number of conflicts that are removed. The extent to which
data gets excluded can be regulated with negative claim generation and prior values that
describe the user’s trust in the data sources.

In summary, we can say that a probabilistic approach is preferable if the goal of the model
generation is to have an abstract model with less disputed claims. On the other hand, if the
goal is to keep all the information and not to take the probabilistic characteristics such as
trustworthiness of the data sources and the credibility of the claims into account in the model
creation, then a simpler approach would work as well.

5.2 Effort and Coverage

The results show that when setting up the framework for usage with the three metamodels
time and effort is needed to configure it. However, given that about a thousand model
elements are created, manual modeling would have taken much longer. Since frequent
updating is beneficial, most likely required, manual modeling also becomes unfeasible from a
life-cycle perspective. A comparison of how much time manual and automated modeling can
take has been done by Holm et al. [4]. Regarding the time spent setting up the framework,
most of it was spent creating mappings between different model languages, including the
mapping between data source elements and the common language. Correct mappings between
the different data and metamodel elements are vital to obtain an accurate holistic systems
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and software (enterprise) model. Other issues that took time include finding the right
abstraction level for the input data and common representation of data values. For instance,
only the network traffic that captures values that described application protocols from
Wireshark are imported and the protocol port numbers are replaced with known application
protocol names.

Although our study tries to improve the coverage of the data for the three chosen
metamodels, this is only partly achieved due to multiple factors: 1) Limited to the devices
and services running in the studied SCADA environment, some types of devices and software
like an IDS or IPS are simply not present. 2) No business process data are included in the
analysis, which means that the ArchiMate model is only partially covered. If there would
have been a data source for business processes then the framework would have allowed it
to be added. Johnson et al. [43] discuss possible data sources for the other layers. And 3)
partly, the incompleteness of the models is caused by the inability to classify software and
hardware products and services. For instance, we cannot identify what software products
are firewalls, anti-viruses, data stores, or web applications. This type of classification could
be achieved with external help (e.g. ontologies). For the securiCAD model, there are enough
data available to create the structure of the systems and software (IT) architecture, but
there is information lacking about many of the properties of the model objects. Some
of this information can be collected from the systems using other tools, however some
would require external help or manual work. An example where additional tools would
be useful are the properties of a Host, namely “ASLR”, “DEP”, “StaticARPTables”,
“AntiMalware”, and “HostFirewall”. These could theoretically be collected automatically
with the appropriate tools. E.g. Windows 7 “ASLR” extension can be identified with
Process Explorer23. One example of where external help is needed are some of the properties
of the class SoftwareProduct, e.g. “StaticCodeAnalysis”, “SecretBinary”, “SecretSource”,
and “HasVendorSupport”. None of these can be obtained from the data collected from
the systems. This information could be collected manually from the product vendors or
development organization instead. External help is also needed when it comes to classifying
the instances of SoftwareProducts. For instance, one needs to identify which software is client
software, server software, web servers, data stores, vulnerability scanners, and anti-malware.

For the EMFTA model it becomes obvious that the probability values for the faults in the
fault tree elements cannot be collected automatically from our lab. Thus, the generated
EMFTA model might seem incomplete in that it lacks quantitative data and therefore
cannot be used for reliability calculations. However, even though precise figures are lacking,
approximate calculations can nevertheless be run. For the particular kind of system used
in our case study – a SCADA system for electric power system control and operation –
availability figures for all the ICT components can be found in literature, e.g. [45]. Even
though the granularities of that model and the one presented in this article do not match
perfectly, it would nevertheless be possible to translate the figures so that they fit the model
presented as a first approximation. Another route to approximate calculations would be to
use distributions from empirical studies of ICT components, such as Weibull of time-to-failure
[46] [47], Time between vulnerability disclosures [48], and log-normal of time-to-recovery [46]
[49]. If generic estimates are not deemed good enough, it is also possible to elicit the relevant
numbers, i.e. time-to-failure and time-to-recovery, for the system at hand using stakeholder
interviews. This has been shown to be feasible in practice without too much effort [50].

An attempt was made to complement the data with outside source information to improve
the quality when importing data with adapters. An example of such a complement is
the IANA’s Service Name and Transport Protocol Port Number Registry24, which add
23 https://blog.didierstevens.com/2011/01/18/quickpost-checking-aslr
24 https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
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service names to p0f traffic captures. Another possibility is to organize Linux packages
into application type based groups. Some Linux vendors provide lists of packages arranged
according to their purpose. Such lists are available, for instance, for some versions of Ubuntu25

and can be used to classify the detected software according to model needs (core packages,
servers, clients etc).

5.3 Truth Algorithm and Negative Values

There are many different truth discovery algorithms available based on various assumptions
and characteristics. The main purpose of many of them is to reason over the truthfulness of
claims made by different web sources. Some algorithms assume that there are sources that lie
on purpose, while others factor in accidental errors and include a degree of randomness. The
authors of this article chose one algorithm, LCA, to reason over system data based on tests of
multiple algorithms. The algorithm chosen is easy to understand and tractable. It has fewer
parameters than other similar algorithms thus the possibility of overfitting is smaller. While
some effort was spent on different assumptions of the truth discovery models and picking an
effective algorithm, the authors do not claim that the algorithm chosen is the most suitable
one for reasoning over IT architecture data. The purpose of this work is to show that using a
truth discovery algorithm for solving heterogeneous problems in IT architecture data makes
sense. Picking the best algorithm needs a separate study, which focuses mainly on algorithm
comparison.

Input errors might occur especially when it comes to using manually created data. Simpler
and common errors are fixed with cleaning and filtering techniques implemented in the
data source specific adapters, while more complex ones require external help, e.g. by using
ontologies. Data errors that are not resolved will end up as conflicts in the truth discovery
analysis. Given that there are enough data sources and one data source keeps making errors,
these errors will reduce the trustworthiness of the data source that thus will be assigned
a low credibility score. It will eventually be excluded from the final data set by the truth
discovery analysis.

As explained, the trustworthiness scores are influenced by negative claims. For that reason
the generation of negative claims should be considered carefully for each data source. It can
be seen from the results that some data sources such as network scanners have extensive
coverage while others like PowerShell cmdlets only made claims about single systems. The
potential capability to have information about particular services and network zones is also
a reason for the high number of negative values that are generated for some sources. E.g. for
Nexpose the number of added negative claims is higher than the number of original claims.
The negative values influence the trustworthiness score of that particular data source, but
also the trustworthiness scores of other data sources whose claims are being disputed.

5.4 Summary and Future Work

The authors believe that the presented study shows that the proposed framework has
practical value for IT architecture modeling using heterogeneous data sources to automate
the process. One probabilistic truth discovery algorithm is tested and it shows promising
results by filtering out highly disputed data values. The strength of the presented framework
lies within its modularity. Different algorithms can be plugged in for conflict resolution as
demonstrated. The study also shows that external help such as an ontology is needed in order
to fully make use of the data. If data values can be classified and grouped in a meaningful
way, the final models will be even more informative.
25 https://packages.ubuntu.com
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Future work needs to focus on improving the quality of the input data. That would help
increasing the quality of the output models and reducing the time needed for data processing.
Other potential topics include a comparative study of truth discovery models and assessing
the framework by applying it in other environments with more diverse data sources.

6 Conclusion
This article proposes a framework for automatically creating holistic IT architecture models
from machine-readable data. The framework supports heterogeneous input data to improve
the coverage of different metamodels. Data are merged in a way where a truth algorithm
reasons over the trustworthiness of different sources. The calculations take into account the
trust in the sources and the claims each source is making. As a result, highly disputed data
are excluded from the final models.

The framework is tested on a Supervisory Control And Data Acquisition (SCADA)
environment. Three models are automatically created in order to show the extensibility
of the framework. The calculation results of the credibility values are compared to a simpler
alternative – naive frequency analysis. Our tests suggest that the proposed framework can
be used to speed up IT architecture modeling with automation when heterogeneous data
from multiple sources is used for the generation of more than one type of IT architecture
model.
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