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Abstract. Planning human activities within business processes often
happens based on the same methods and algorithms as are used in the area
of manufacturing systems. However, human behaviour is quite different
from machine behaviour. Their performance depends on a number of
factors, including workload, stress, personal preferences, etc. In this article
we describe an approach for scheduling activities of people that takes
into account business rules and dynamic human performance in order to
optimise the schedule. We formally describe the scheduling problem we
address and discuss how it can be constructed from inputs in the form
of business process models and performance measurements. Finally, we
discuss and evaluate an implementation for our planning approach to show
the impact of considering dynamic human performance in scheduling.
Keywords: Scheduling, business process management, dynamic human
performance, mixed integer programming.

1 Introduction

Scheduling is used in the planning of personnel and human activities in different environments [1],
[2], [3]. Traditionally, scheduling problems are often presented as optimisation problems in the
context of manufacturing systems, where a set of jobs is to be assigned to a set of machines such
that the total length of the schedule is minimized. However, the basic job shop scheduling problem
has been extended and scheduling problems now exist in many different variations and settings,
each with their own characteristics. These variations aim to incorporate the complexity of the
real world in order to increase the applicability of their solutions, but this generally increases the
difficulty of finding an optimal schedule.
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Nowadays, the work in many organisations such as hospitals and financial institutions is done
according to predefined business processes [4], [5]. These processes specify which activities need
to be executed, in what order and by whom [6], [7]. The field of Business Process Management
(BPM) can be defined as a discipline involving modeling, automation, execution, control,
measurement and optimization of these business activity flows. Therefore, we are interested
in incorporating elements from BPM, such as the use of process models, into human activity
scheduling in order to match the current way of working.

Additionally, in the majority of scheduling literature, activity or job durations are assumed to be
fixed [1], [2], [3]. In reality job durations may vary due to uncertainties in the nature of the process
such as machine breakdown and accidents, but also due to variations in human performance.
People’s performance changes dynamically depending on factors such as their experience, stress
and workload [8], [9], [10], [11]. This means that the schedule itself, including the number of
breaks and the order of jobs performed, affects human performance and therefore the realisations
of job durations. Hence, we argue that the accuracy of schedules and the timely execution of
processes can be improved by taking a dynamic view of human performance.

In order to take dynamic human performance into account during scheduling, we need to
establish the interactions between performance and the execution of the activities to be scheduled.
Part of this information can be gathered by logging the jobs being performed by people and
their duration. Other information such as the relation between stress and performance can be
obtained using new technological advances and smart sensor technologies [12], [13]. These
enable unobtrusive monitoring of personal stress levels to identify sources of stress at work and
discover performance patterns. Together, this information could then be taken into account in
personal activity scheduling and perhaps even improve both the health of employees and their
performance [14].

In this article we present a human performance-aware activity planning approach that takes
into account dynamic performance differences to find schedules in a setting where the activity
workflow is defined by process models. The contributions of this article are the following:

• A formal description of a workforce scheduling problem is provided where individual, dynamic
performance differences are taken into account.
• The relation between Business Process Management (BPM) and this scheduling problem is

established, showing how the scheduling problem can be constructed from inputs in the form
of business process knowledge.
• An evaluation on synthetic data shows that a Mixed Integer Linear Programming (MILP)

solution of the scheduling problem can take into account dynamic human performance to create
schedules where employee workload and efficiency are balanced.
• The evaluation also shows that the difficulty of the scheduling problem with dynamic human

performance is not significantly increased compared to scheduling with static performance.

The remainder of this article is organised as follows: In Section 2 we first formulate the
scheduling problem and its characteristics. The related work in the area of workforce scheduling is
presented in Section 3. In Section 4 we explain how to obtain the scheduling instance parameters
necessary to construct a dynamic human performance-aware scheduling problem in the context of
BPM. Then we introduce an MILP implementation of the approach in Section 5 and we evaluate
the implementation in Section 6. Finally, in Section 7 we conclude the article and state several
areas for future work.

2 Problem Description and Notation

In this section we first discuss the modelling of human performance and then formulate our
workforce scheduling and routing problem that takes into account such a performance model.
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We introduce the notions of procedures and a dynamic human performance efficiency factor in our
scheduling problem as extensions to previously studied scheduling and routing problems in the
literature, which are discussed in Section 3. We develop the necessary notation accordingly.

2.1 Problem Setting

As in most scheduling problems, we are interested in obtaining an optimal allocation of a set of
activities over a set of resources, given a number of restrictions and an objective [1], [2]. Different
from other scheduling settings, we assume that the activities, resources and restrictions are part
of one or more processes within an organisation. These processes can be described from different
perspectives using process models and organisational models to specify which activities need to be
executed, in what order and by whom.

The three most commonly represented process perspectives are the functional, organisational
and behavioural perspectives [6], [7]. The functional perspective represents the process elements
which are being performed, i.e. the jobs being scheduled. The organisational perspective represents
where and by whom these process elements are performed. The behavioural or control flow
perspective represents the possible orderings in which process elements are performed and other
aspects such as iteration and decision points.

Taking these perspectives into account we can derive the required elements of our scheduling
problem in this context. We obviously have a set of jobs to be scheduled and a set of workers
performing these jobs. We also need a set of locations and travel times because one worker
may execute activities at different places, e.g. a surgeon in a hospital moves between working
in his office and the operating rooms. Not everybody may perform every activity that needs to
be planned, e.g. a secretary and a manager have different duties, so we assume that workers have
different skills that define which jobs they may execute. Processes generally have an order to the
activities being performed, e.g. a mortgage application needs to be validated before the mortgage
is provided, so we also assume that there are precedence relations. Finally, there are sometimes
multiple ways to achieve the same goal, e.g. replacing or repairing a broken machine, so we define
a set of choices between job alternatives. These elements form the starting point of our workforce
scheduling problem, together with a model for the performance of the workers.

There are other possible aspects that can be considered in scheduling problems in addition to
the ones mentioned above [1]. However, including such extensions comes at the cost of additional
complexity in both modelling and the search for scheduling solutions.

2.2 Dynamic Human Performance

It is well known that the performance of people is dynamic and depending on various factors such
as experience, stress and workload [8], [9], [10], [11], [13], [15]. For some of these factors, e.g.
workload there exist frameworks that can be used to model human performance [15], but for others
such as stress there is no unified consensus on how exactly they affect human performance [9].

Over the years different models have been proposed to explain how stress affects performance.
A well known model is that of Yerkes and Dodson, which has been explained to state that
performance increases as stress or arousal increases, until a point where increased stress will
decrease performance [16]. However, additional research has shown that the Yerkes and Dodson
law of performance cannot be universally applied and additional models have been formulated and
tested [9]. For instance, Westman et al. examined the relationship between stress and performance
across a variety of mental domains and their results supported a negative linear trend between
stress and performance [10].

In the absence of a consensus on the best model to explain the theoretical relationship between
stress and performance, researchers have made progress on measuring these relations in practice.
Various physiological measures (e.g. cortisol levels or skin conductance) have been used to
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get indications of a person’s stress or a partial proxy, e.g. workload [9], [13]. Studying these
measures can reveal relations between a process or event and the stress that a person experiences.
Importantly, due to new technological advances in smart sensor technologies, people are now able
to unobtrusively monitor their personal stress levels and become aware of sources of stress or
patterns in their daily lives that lead to stress for themselves [12], [13].

The above results reveal the need to consider the effects of workload and stress in order to
improve the quality and accuracy of schedules for people’s work. Furthermore, the advances in
personal stress measurement and the investigation of relations between stress and specific aspects
of performance lead us to conclude that it is possible to discover personal models that relate stress
to the efficiency of performing certain tasks [12], [13]. Such models can subsequently be used in
solving scheduling problems, which to the best of our knowledge have not been considered before.

In this work we assume a model where workers have an efficiency level that varies depending
on the jobs they perform. Not all jobs affect the efficiency of a worker equally, e.g. some jobs may
be more tiring or stressful, so we consider an exhaustion ratio for each job. To further take into
account the effects of workload on human performance we assume that there is a certain recovery
rate for the efficiency of workers while they are not working. Although the effects of workload
and stress on performance vary between individuals, we assume for simplicity a general model
of the dynamic human performance in our scheduling problem and do not consider individual
differences.

2.3 Notation

Below we provide a description of the workforce scheduling problem that we consider in this work,
based on the above problem setting and our assumed model of dynamic human performance. The
notation is summarized in Table 1 in Section 5 and used in the formulation of the Mixed Integer
Linear Programming model presented there.

Locations We are given a network having a set N of locations where jobs may be processed. The
traveling time needed to go from n to n′ is denoted by Tn,n′ with n, n′ ∈ N .

Workers We are given a set W of workers, each having skills and varying efficiency levels as
explained in the following.

Skills We are given a set S of skill domains that can be used to define which workers can execute
which jobs. The skills of a worker w are given as SKw ∈ {0, 1}S .

Jobs We are given a set J of jobs that need to be scheduled. Workers assigned to job j ∈ J
should meet the required skills which are given by SRj ∈ NS , i.e. SRj specifies for each skill
the minimal number of workers needed that posses that skill. We assume that workers can use
their skills simultaneously in all domains while processing a job. Additionally, job j can only start
being processed after its release date Rj , and the completion should be not later than due date Dj .
Finally, a job may be processed in a number of locations in Nj ⊆ N , from which one is chosen in
the schedule as the processing location of the job, denoted as locj ∈ Nj .

Efficiency The performance of the workers in our problem is expressed using efficiency levels. A
worker’s efficiency level at time t is given by elw,t ∈ (0, 1), where 0 is the lowest efficiency level,
and 1 is the highest. Due to the complex nature of team performance we use a simplified model
where job durations depend on the minimum of the efficiency levels of the workers performing it.
That is, a job j ∈ J has a shortest duration pj if all of the assigned workers are at the highest
efficiency level and a longest duration if at least one worker is at the lowest efficiency level.

Workers’ efficiency levels may decrease due to performing a job and we assume that the change
depends on the current efficiency level of the worker and the job to be processed. Let worker w
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with efficiency level elw,t start performing job j at time t. Then performing job j will decrease the
efficiency level of worker w with δj ∗ elw,t, where δj ∈ (0, 1) is called exhaustion ratio of job j.

Moreover, traveling and idle times contribute to the relaxation of workers according to the
recovery rate. For simplicity, we assume that the increase in efficiency level is proportional with
the relaxation time, hence the efficiency level increases at a constant recovery rate EC+ ∈ (0, 1).
That is, if a worker w starts performing job j′ after t units of idle time after the completion of job
j, then relaxation increases the efficiency level by t ∗ EC+ to a maximum of 1.

Procedures We are given a set P of procedures that are part of a process in whose context the
scheduling problem exists. These procedures define the behavioural or control flow perspective
that expresses relations between jobs, such as their ordering or potential choices in a process.

We assume four types of procedures: individual jobs, sets of sub-procedures, ordered sequences
of sub-procedures, and choices between sub-procedures. The function jobs : P → {0, 1}J gives
the collection of jobs associated with a procedure. If procedure p ∈ P is an individual job j
then jobs(p) = j, but if p is a set, sequence or choice of sub-procedures {p1, . . . , pq} ∈ p then
jobs(p) =

⋃
1≤i≤q jobs(pi). Each procedure is unique and can only be the sub-procedure of at

most one other procedure, i.e. ∀p, p′ ∈ P : ∀pi ∈ p, pi′ ∈ p′ : pi 6= pi′ . The set of set procedures is
denoted as Pset ⊂ P , the set of sequence procedures is denoted as Pseq ⊂ P and the set of choice
procedures is denoted as Pxor ⊂ P .

Precedence Relations There exist precedence relations between jobs that are part of the
sub-procedures of a sequence. If j is a predecessor of j′ then the start time of job j′ should be
at least the completion time of job j. We define the function pred(j) : J → {0, 1}J , the set of
predecessors of j ∈ J , as follows: ∀p ∈ Pseq : ∀pi, pi′ ∈ p, i < i′ : ∀j ∈ jobs(pi), j′ ∈ jobs(pi′) :
j ∈ pred(j′). That is, the order of the sub-procedures of a sequence defines the order in which
their jobs should be executed.

Choices In real-life situations the same goal can sometimes be achieved by different types of
actions, each requiring different skills and durations. For instance, a problem in a high-tech
machine in manufacturing may be fixed by maintenance experts by making configuration
adjustments, whereas the problem may also be solved by technicians replacing the problematic
components of the machine. We model achieving the same goal by alternative ways in the form of
choices.

Only one of the sub-procedures of each choice is executed, so the jobs and other procedures
that are part of a choice are optional and not always scheduled. We define optional procedures as
POpt = {p ∈ P|∃p′ ∈ Pxor : jobs(p) ⊂ jobs(p′)} and hence PMan = P \ POpt defines the
mandatory procedures.

2.4 Feasibility

A solution to our problem specifies a start time stj , location to process locj ∈ Nj , and team to
process ωj ⊆ W for every executed job j, and a job processing sequence jsw = (jsw(1), . . . ) for
every worker w ∈ W . From this we can compute routes, efficiency level changes of workers and
durations of jobs. Let λj be the realized duration of job j, and let deptw,jsw(i) denote the departure
time of worker w at location locjsw(i), where ith job in the sequence jsw is performed.

In the following, we detail the constraints to be satisfied by every feasible solution.

Executed Jobs Let Exec : P → {0, 1} where Exec(p) = 1 implies that procedure p is executed,
and Exec(p) = 0 means otherwise. By definition,

Exec(p) = 1, p ∈ PMan (1)
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Set and sequence procedures are executed if all of their sub-procedures are executed, i.e.

Exec(p) ∗ |p| =
∑
pi∈p

Exec(pi), p ∈ Pset ∪ Pseq (2)

Choice procedures are executed if exactly one of their sub-procedures is executed, i.e.

Exec(p) =
∑
pi∈p

Exec(pi), p ∈ Pxor (3)

Let JX denote the jobs that are executed in a given schedule, i.e. JX = {j ∈ J |Exec(j) = 1}.

Precedences Every job starts after completion of all of its executed predecessors

stj′ + λj′ ≤ stj, j′ ∈ pred(j); j′, j ∈ JX (4)

Skill Requirements The cumulative skills in team of a job should satisfy the minimum skill
requirements ∑

w∈ωj

SKw ≥ SRj, j ∈ JX (5)

Temporal Constraints Departures of workers from processing locations should respect completion
times of jobs

deptw,jsw(i) = stjsw(i) + λjsw(i), w ∈ W , 1 ≤ i ≤ |jsw| (6)

Start times of jobs respect departure and travel times of workers

stj ≥ max
w∈ωj ,jsw(k)=j

{deptw,jsw(k−1) + Tlocjsw(k−1),locjsw(k)
}, j ∈ JX (7)

Utilization of Workers
w ∈ ωj ⇔ j ∈ jsw, j ∈ JX , w ∈ W (8)

Efficiency Levels Efficiency levels of workers change as determined by the job they process and
the travel or waiting time until the next job starts.

elw,stjsw(i)
= elw,stjsw(i−1)

− δjsw(i−1)elw,stjsw(i−1)

+ EC+(stjsw(i) − deptw,jsw(i−1)), w ∈ W , 1 ≤ i ≤ |jsw| (9)

2.5 Scheduling Problem

The objective of our scheduling problem is to minimise the makespan. The makespan, denoted by
Cmax, is the latest completion time of any executed job. Now we can state our problem as follows:

PROBLEM: HUMAN PERFORMANCE-AWARE SCHEDULING AND ROUTING (HPAS)
INSTANCE: Given set S of skill domains, setN of locations, setW of workers with varying
efficiency levels, set J of jobs with skill requirements, exhaustion ratios, and efficiency
dependent durations, and set P of procedures.
QUESTION: Does there exist a feasible schedule that satisfies constraints (1)–(9), presented
in Section 2.4, and minimizes Cmax?
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3 Related Work

In this section we discuss related work on workforce scheduling.

3.1 Workforce Scheduling and Routing

This article describes a scheduling and routing problem containing three new aspects; efficiency
factor, choices, and alternative locations for jobs. The reduced problem obtained by dropping these
aspects is closely related to the technician routing and scheduling problem studied by [17]. The
difference is in the feasibility such that teams are built to travel together and perform all assigned
tasks within a workday. The authors extend the technician scheduling problem of [18] and [19]
by adding routing aspect. The aforementioned scheduling problem belongs to France Telecom
which was the topic of ROADEF 2007 Challenge. Note that in this stream of problems, customers
demands are expressed as service skill/quality rather than good amount. For an extensive overview
of multi-skill workforce scheduling we refer to [3].

Services in home health care may also require routing of nurses, social workers, and doctors as
in the problem settings of [20], and [21]. [22] studies the skilled Vehicle Routing Problem (VRP)
that is equivalent of the special case of our problem, without the new aspects, in which every job
can be performed by one technician. This problem is actually a routing problem in which skills
define compatibilities between vehicles (i.e. nurses/doctors) and customers (i.e. patients). Due to
social dimension of home care services, several soft constraints should be cared. For instance, the
patients prefer receiving their treatments by the same nurse which is also preferred symmetrically
by nurses as well.

[23] describes a workforce routing and scheduling problem in the maintenance of electricity
networks. In the studied problem, jobs are defined as sets of tasks and the tasks belonging to a
job are related by precedence constraints. In airlines sector, the aircraft maintenance routing and
the crew scheduling problem is studied by [24]. Here, the services are flights and the skills are
implicitly defined by flight properties.

[25] views the Technician Scheduling and Routing Problem as an extension for the Vehicle
Routing Problem in which technicians play the role specific vehicles with certain skills, tools,
and spare parts. Similarly, the problem studied by [18] aims to combine technicians in order to
form a convenient so-to-say vehicle that is capable of performing the assigned workload. There,
the authors do not consider routing aspect, but only the scheduling of tasks, i.e. simultaneously
combining technicians as teams and combining tasks as team workloads. Moreover, the authors
combine tasks and technicians to obtain schedules for given time periods, so-called workdays. The
VRP with time windows (VRPTW) has a vast literature. For an extensive overview for the VRPTW
and state-of-art approaches we refer to [26].

Our workforce scheduling and routing problem is NP-Hard, since it contains the VRPTW
as a special case. In order to tackle the high complexity of workforce scheduling and routing
problems, many researchers proposed smart enumeration algorithms like Branch-and-Price or
Branch-and-Cut. In order to obtain high lower bounds, these problems are reformulated as master
LP models that are convenient for applying Column Generation methods.

Another line of research contains Large Neighborhood Search (LNS) methods. These methods
first construct an initial solution by employing simple heuristics like greedy. Then destroy and
repair methods are used to modify and hopefully improve the incumbent solution. [17] propose an
Adaptive LNS method in which it is dynamically decided which destroy and repair methods are
used. [23] defines a LNS method in which work plans are found first, feasibility of work plans is
checked by a dynamic programming, and optimal schedules of feasible work plans are found by
solving a LP model.

[27] proposes a heuristic method that solves significantly restricted MIP problems to iteratively
improve the best known feasible solution. [22] develops an aggregated flow based VRP model and
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concludes that the LP bound of their ILP model seems strong and may be used as a starting point
for a heuristic.

3.2 Optional Jobs and Scheduling

In classical scheduling problems it is assumed that all jobs that are considered for scheduling have
to be processed [3]. However, there exist some scheduling problems that consider logical nodes in
addition to the precedence relation to create a precedence network of jobs [28]. Using these logical
nodes it is possible to create precedence networks that are similar to process models, allowing
choice and repetition.

Unfortunately, in this setting the creation of scheduling problem instances requires additional
steps to transform these precedence networks to standard precedence relation or dependency
graphs in order to obtain a schedule. Such transformations as described by [28] have several
drawbacks. Their strategy to deal with choices is to create an alternative dependency graph for
each possible choice. Afterwards, the scheduling is done separately for each individual dependency
graph and finally the best solution is chosen. This means that the number of scheduling problems
to solve is exponential in the number of choices in the process. To eliminate repetition, they unfold
each cycle and create new occurrences of the repeated activities in the dependency graph. The
unfolded activities then have a duration in the scheduling problem that is multiplied by the expected
number of repetitions. The disadvantage of this approach is that for a process with a choice inside
a repetition, it is no longer possible to make a different choice for each execution of the repetition.

In the field of order acceptance and scheduling, or scheduling with job rejection, there are
also both optional jobs and mandatory jobs [29], [30]. These problems are concerned with both
determining which jobs should be processed and how the accepted jobs should then be scheduled.
In these problems there is usually a high inventory or tardiness costs, such that it is more
cost-effective to outsource or reject some of the jobs.

This area of scheduling is related to our problem in the sense that we consider mutually
exclusive sets of choice sub-procedures. These choices are used to model the parts of business
processes where there exist choices between alternative ways to execute process activities. This
means that some of the jobs are mandatory, while others may not be executed depending on the
choices. Order acceptance problems often allow for total freedom in the rejection of jobs, but there
also exist variants where precedence constraints or a set of mandatory jobs are considered [31],
[32]. In our setting we do not reject jobs, but choices are instead used to specify alternative ways
of essentially reaching the same goal.

4 Incorporating BPM in Scheduling

One of the goals of our work is to show that business process knowledge can be used in the context
of workforce scheduling. We have formulated the HPAS scheduling problem in Section 2, and
specified the necessary inputs to construct such a problem instance. In this section we discuss
which elements from the field of BPM can be used in this setting, leading to an overall scheduling
approach as shown in Figure 1.

We assume that our scheduling approach is applied in the context of one or more business
processes. This means that the construction of a HPAS problem instance consists of the
combination of information from three of the most commonly represented process perspectives [6],
[7], together with process execution measurements. The functional perspective represents the
process elements which are being performed, i.e. the jobs being scheduled. The organisational
perspective represents where and by whom these process elements are performed, i.e. the job
processing locations, the workers, their skills and job skill requirements. The behavioural or control
flow perspective represents the possible orders in which process elements are performed and other
aspects such as iteration and decision points, i.e. the precedences and choices between jobs. The
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Figure 1. An overview of the use of business process knowledge in scheduling. To create the HPAS problem
instance as specified in Section 2 we need to determine various input parameters that can be linked to specific
aspects from the field of process management.

last input, process execution measurements and information on the performance of people relates
to the efficiency levels of workers and the processing times of jobs.

Some of this information needed to construct a HPAS instance is easily obtained and specified,
e.g. the jobs that need to be scheduled and their allowed processing locations, while other inputs
need to be derived or calculated, e.g. the relations between worker efficiency and estimated
processing times. In the remainder of this section we discuss how to obtain the non-trivial problem
inputs.

4.1 Organisational Perspective

The organisational perspective of a process provides several of the parameters for the scheduling
of a workforce. It is generally straightforward to obtain an overview of the locations involved
in a process and to specify where each activity can be performed. Most activities either have a
fixed location, e.g. jobs involving physical presence at a specific customer or patient [33], or no
location restrictions, e.g. electronic work that can be accessed using IT solutions [5], [34]. In many
situations it is also clear which workers or organisational roles can be involved in each activity.
However, this information may need to be transformed to the format of skills and skill requirements
introduced in Section 2.

A process description may specify that an activity can be performed by members of a
specific organisational unit, a role, specific employees or workers with a specific skill set [7].
In our HPAS problem description we only accounted for the requirement of specific skills for
the execution of jobs, but the other situations can be easily modelled using artificial skills. For
instance, if a job in a purchasing process requires an employee from the financial department then
an artificial skill financial department can be created, assigned to all workers from the financial
department and added as a requirement to any job requiring an employee from this organisational
unit. In this way it is possible to create an arbitrary mapping specifying the organisational
requirements for jobs in the form of skills.

4.2 Determining Worker Efficiency

The integration of dynamic human performance is one of the core elements of the HPAS problem.
However, it is not easy to determine the input parameters for this aspect of the scheduling
problem [15]. This has to do with the complex nature of human performance, which we discussed
in Section 2.2.

In our problem statement we described a simplified model of the relation between changing
worker efficiency and the duration of activities. The essential elements of this model are that each
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activity is assumed to have a minimal and a maximal duration, i.e. the time it is expected to take
for the job to be completed when the workers are at optimal or worst efficiency, respectively. These
durations can be established using performance measurements under the assumption that the jobs
that need to be scheduled can be compared to previous jobs for which performance measurements
are available. In this way worker experience and individual performance differences are taken into
account.

Additionally, the problem statement specifies that the workload of a worker causes job-specific
exhaustion that may reduce the efficiency of workers. Depending on the available data,
different models can be chosen to predict dynamic human performance based on workload. For
instance, [15] provides a model to determine the distributions of performance variables based on
the effects of taskload, where a higher taskload results in lower performance. Taskload in this case
is simply the percentage of time during which the worker was performing a given set of tasks
during a specific time period. This is comparable to the way that performing jobs decreases the
efficiency level of workers and idle times relax and improve the efficiency level of workers in our
problem statement.

As the work of [14] has shown, there are also links between stress, workload and performance.
[13] provides a method to predict the performance of workers using data from wearable biosensors
that measure galvanic skin response, a popular measurable indicator of stress. Establishing such
models can explain how the efficiency of workers is affected by specific jobs that cause stress
or exhaustion. These models can then be used to calculate individual and context-dependent
performance estimates to be used in the scheduling problem.

4.3 Functional and Control Flow Perspectives

The functional perspective is the most basic process perspective, representing the process elements
being performed and therefore being closely related to the jobs in a scheduling context. However,
the most well-known process perspective is the control flow perspective, which expresses the
behaviour allowed by the process in terms of its executions. Process models usually combine both
perspectives and describe the allowed ordering of activities [6], [7], which means that they contain
information on the jobs to be scheduled and their precedence relations. In this section we provide
an approach to incorporate process models in the form of process trees [35], [36], a formalism to
specify block-structured workflow nets [4], into our scheduling problem.

There exist many different process model notations [4], [7], but most traditional modelling
languages allow the creation of models that are not sound, i.e. these models may contain deadlocks,
livelocks and other anomalies. Process trees, however, are guaranteed to represent sound process
models and their structure enables a more straightforward mapping between process knowledge
and scheduling input.

Figure 2 shows the possible operators that process trees can be composed of, and their
translations to BPMN constructs [35], [36]. Operator nodes specify the relation between their
children. The five available operator types are: sequential execution (→), parallel execution (∧),
exclusive choice (×), non-exclusive choice (∨) and repeated execution (	). Children of an operator
node can again be operator nodes or they can be leaf nodes that represent the execution of an
activity. The order of the children matters for the sequence and loop operators. The order of the
children of a sequence operator specifies the order in which the children are executed (from left to
right). Nodes can have an arbitrary number of children, except for loop nodes (	) that always have
three children. The left child is the ‘do’ part of the loop and after its execution either the middle
child, the ‘redo’ part, may be executed or the right child, the ‘exit’ part, may be executed. After the
execution of the ‘redo’ part the ‘do’ part is again enabled and the ‘exit’ part is disabled. Process
trees can also contain unobservable activities, indicated with a τ .

The types of nodes in process trees match closely with the notion of procedures as defined in
Section 2.3. Leaf nodes representing activities can be compared to individual jobs. Similarly, the
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Figure 2. The process tree operators and their relation to BPMN constructs

Figure 3. A process model for a simple hardware maintenance process

behaviour of the→ operator matches that of the sequence procedure, while the ∧ operator matches
the set procedure, and the × operator matches the choice procedure. For the non-exclusive choice
(∨) and repeated execution (	) there is no direct translation between process tree operator and
scheduling concept. The reason for this is that in a setting where the makespan of a schedule
is minimized, it is not desirable to execute unnecessary activities. Hence a non-exclusive choice
becomes an exclusive choice in a scheduling context and the loop becomes a sequence of a single
‘do’ and ‘exit’.

Figure 3 shows an example process model for a simple hardware maintenance process in the
form of a process tree [35], [36] and a BPMN model [4]. Each instance of this process starts with
the execution of a single Problem Intake (PI) activity. This is followed by the parallel execution
of Arrange Service Evaluation (ASE) and a choice between a Repair Product (RR) or a Replace
Product (RC). The Repair Product activity is followed by Test Product (TP), and in either case
there is the option to perform a Redo Maintenance (RM) afterwards in order to execute a new
round of activities. Finally, the process instance ends when Document Incident (DI) is executed.

This example process can be transformed into the following set of scheduling procedures. The
individual jobs: {PI,ASE,RR, TP,RC,RM,DI}. The set ∧ with sub-procedures {ASE,	}.
The sequences→1 with sub-procedures {PI,∧, DI} and→2 with sub-procedures {RR, TP}. The
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choice × with sub-procedures {→2, RC}. This collection of scheduling procedures represents a
single execution or process instance of this process model.

Note that the 	-operator has been assumed to be executed once without redo. However, a
process model can express complex constructs such as choices or repetition, which need special
considerations when deducing the scheduling procedures from a process model. We discuss this in
the next subsection in more detail.

In the above example we constructed the procedures belonging to a single execution of a
process. However, in general there are often many process instances being executed concurrently,
possibly described by different process models. To create a scheduling problem instance where
activities from different process instances are competing for the same resources, the deduction of
the procedures is simply repeated for each process instance to be scheduled.

4.4 Choices and Repetition

In practice, the choices made and repetitions executed often depend on factors that are difficult
to consider during the creation of a schedule. For instance, some choices may depend on external
events or data, so called non-controllable choices, while controllable choices can be decided by
the people executing the process [37]. Historical information may be used in order to estimate
the expected activity executions and non-controllable choices made. During the creation of the
scheduling problem, this information can then be used to omit the branches of non-controllable
choices that are not expected to be executed for a given process instance. However, we retain
controllable choices in our scheduling problem, which are not fixed by the characteristics of a given
process instance or external input, in order to allow the scheduling approach to make the best choice
for a better process execution. Dealing with repetition is similar to handling non-controllable
choices, as we assume that repeating activities are not desirable in our scheduling context.

For each process instance, we need to determine what the controllable and uncontrollable
choices and repetition are, which requires domain knowledge of the process. In the process model
shown in Figure 3 there is a choice and a cycle: a choice between a repair and a replacement and
an option to restart the maintenance cycle. The choice between repairing or replacing the product
is controllable, so this results in a choice procedure in the HPAS instance with two alternative
sub-procedures. The option to restart the maintenance depends on the success of the previous
activities, so this repetition is in any case uncontrollable and therefore deciding whether or not to
restart the maintenance cycle cannot be part of the scheduling problem.

Handling an uncontrollable choice or repetition depends on previous process performance
measurements. If the maintenance cycle is only repeated rarely then this activity can be omitted
from the list of jobs to be scheduled. Alternatively, an estimation can be made for the number of
process instances that will feature a repeated maintenance. For these process instances we need to
take care of the repetition in the model to arrive at a finite set of jobs and procedures representing
their execution.

To remove infinite behaviour and create a proper dependency graph, we unfold repetition in
the process model when present in a given instance. This is done using the observation that each
	-operator results in a sequence of ‘do’ and ‘redo’ executions, finalized by the execution of the
‘exit’ branch. Therefore, once an assumption has been made on the number of executions of the
repetition, it can simply be replaced. For the example process with a single estimated repetition
execution, the possible cycle is replaced by a choice between a repair and replacement, followed
by Redo Maintenance, again followed by a choice between repair and replacement, after which
the process continues. This procedure can be repeated for every cycle in the process model,
where multiple executions of a cycle result in multiple sequential unfoldings of the ‘do’ and
‘redo’ branches. Using the above transformation approach, executions of any process tree can
be scheduled by solving a HPAS instance.
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5 Solving HPAS Instances

As shown in Figure 1, once we have created a HPAS instance as described in Section 4 we need
to solve it to obtain optimised schedules. We have formulated our scheduling problem as a Mixed
Integer Linear Programming (MILP) model, which is included below. This MILP model has been
implemented and can be solved with CPLEX [38].

The formulation of the MILP model is relatively straightforward from the problem statement
defined in Section 2. The notation from Section 2.3 is summarized in Table 1. The exact relations
between worker efficiency levels and job durations are not explicitly specified in the problem
statement. The reason for this is that these relations are heavily affected by a trade-off between
model complexity and realism. As stated in Section 4.2, there are complex models that can be used
to predict dynamic human performance based on historical performance measurements. Instead
of these complex models we chose to assume a job-specific linear dependency between efficiency
and job durations for ease of understanding and computational efficiency.

We also simplified the modelling of choice procedures slightly by restricting that a choice
procedure cannot contain another choice as a sub-procedure. The reason for this was to reduce the
complexity of the MILP model, as the size of the scheduling problems that can be solved using
this implementation is limited.

The MILP model has several constraints that use Big M coefficients to formulate our nonlinear
scheduling problem in a way that can be solved using linear programming. The coefficients are
used to trivially enable certain constraints using indicator variables, e.g. to only specify activity
durations for the jobs that are actually executed.

Table 1 gives the notation used in our MILP model, i.e. sets, indices, parameters, and decision
variables.

Minimize Cmax (10)

subject to

sj + λj ≤ Cmax, j ∈ J (11)

∑
pq∈p

execpq = 1, p ∈ Pxor (12)

xj = execpq , j ∈ jobs(pq), pq ∈ p, p ∈ Pxor (13)

∑
n∈Nj

yj,n = xj, j ∈ J (14)

sj′ + λj′ −M(1− xj′) ≤ sj, j ∈ J , j′ ∈ PREDj (15)

Rj −M(1− xj) ≤ sj ≤ Dj − λj, j ∈ J (16)

∑
w∈W

SKs
w

Imax∑
i=1

zw,i,j ≥ SRs
jxj, j ∈ J , s ∈ S (17)

∑
j∈J

zw,i,j ≤ 1, w ∈ W , i ≤ Imax (18)
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Table 1. Sets, parameters, and decision variables

Sets
S set of skill domains, s ∈ S
N set of all locations, n ∈ N
W set of all workers, w ∈ W
J set of all jobs, j ∈ J , J = JMan ∪ JOpt

Pxor set of all choice procedures, p ∈ Pxor

Parameters
Tn,n′ travel time to go from location n to n′

Nj allowed processing locations of job j
SKw skills of worker w, SKw ∈ {0, 1}S×L
SRj skill requirements of job j, SRj ∈ NS×L
Rj , Dj release and due date of job j
PREDj predecessors of job j, PREDj ⊆ J \ {j}
Pj minimum processing time of job j
ρj rate at which the duration of job j is increased due to worker inefficiency
δj exhaustion ratio by which efficiency decreases after performing job j, δj ∈ (0, 1)
EC+ efficiency level change due to relaxing or travelling in unit time
Imax maximum size of any job sequences of workers
jobs(pq) set of jobs in sub-procedure pq ∈ p, of choice p ∈ Pxor, jobs(pq) ⊂ JOpt

Decision Variables
Cmax makespan of the schedule
sj , λj start time, and duration of job j
execa indicates if alternative a is executed, a ∈ c, c ∈ C
xj indicates if job j is executed
yj,n indicates if processing location locj of job j is n, where n ∈ Nj

zw,i,j indicates if job j is ith job in the job sequence of worker w, i.e. jsw(i) = j
deptw,i departure time of worker w at the processing location of jsw(i)
τw,i travel time of worker w from processing location of jsw(i− 1) to the one of jsw(i)
elw,i efficiency level of worker w when starting to process job jsw(i)
el−w,i efficiency level change of worker w due to processing job jsw(i)

Imax∑
i=1

zw,i,j ≤ xj, w ∈ W , j ∈ J (19)

∑
j∈J

zw,i,j ≤
∑
j∈J

zw,i−1,j, w ∈ W , i ≤ Imax (20)

deptw,i−1 + τw,i −M(1− zw,i,j) ≤ sj, j ∈ J , w ∈ W , i ≤ Imax (21)

sj + λj −M(1− zw,i,j) ≤ deptw,i, j ∈ J , w ∈ W , i ≤ Imax (22)

Tn,n′ −M(4− yj,n − yj′,n′ − zw,i−1,j − zw,i,j′) ≤ τw,i,

j, j′ ∈ J , n ∈ Nj, n
′ ∈ Nj′ , w ∈ W , i ≤ Imax (23)

δj ∗ elw,i −M(1− zw,i,j) ≤ el−w,i, j ∈ J , w ∈ W , i ≤ Imax (24)
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elw,i−1 − el−w,i−1 + EC+(sj − deptw,i−1)−M(1− zw,i,j) ≥ elw,i,

j ∈ J , w ∈ W , i ≤ Imax (25)

Pj ∗ (1 + ρj(1− elw,i))−M(1− zw,i,j) ≤ λj, j ∈ J , w ∈ W , i ≤ Imax (26)

execpq ∈ {0, 1}, pq ∈ p, p ∈ Pxor (27)

yj,n ∈ {0, 1}, j ∈ J ∪ JOpt, n ∈ Nj (28)

zw,i,j ∈ {0, 1}, j ∈ J ∪ JOpt, w ∈ W , 1 ≤ i ≤ Imax (29)

Then the MILP model is given by constraints (10)–(29). The first constraint (10) is the objective
function which is minimized. Constraint (11) is used to find the makespan of the schedule.
Constraints (12)–(13) ensure that only one alternative sub-procedure is executed per choice.
Mandatory jobs are always executed, i.e. xj = 1 for all j ∈ JMan, so we define xj variables for
jobs inJMan only for the simplicity of the MILP formulation. Every job should be executed exactly
in one location (constraints (14)), and precedence relations should be satisfied (constraints(15)).
Executions of jobs should be between their release and due dates (constraints(16)), and they should
be executed by a group of workers who have requested skills to do so (constraints(17)). Assignment
between workers and jobs are expressed by constraints (18)–(20). Constraints (21)–(23) ensure
that each worker has a route while executing the jobs and temporal constraints are satisfied,
i.e. departures, start times, and travel times. Constraints (24)–(26) are used to obtain correct
efficiency level of workers after job executions and efficiency-dependent job durations. Note that
the efficiency level update in constraints (25) considers efficiency changes of a worker due to job
execution as well as efficiency changes due to non-working times like breaks and travels. Finally,
constraints (27)–(29) enforce that choice-sub-procedure-execution, job-location and worker-job
assignment variables should be binary.

6 Evaluation

In this section we present an evaluation of the MILP implementation introduced above. The main
goals of the evaluation are to show that dynamic human performance can be taken into account in
scheduling and to understand how the inclusion of dynamic performance differences in scheduling
affects the complexity of the problem. Therefore, we created a simulation model and compared
the simulated performance to the schedules generated by our approach. We also tested the ability
of the MILP implementation to solve different scheduling problems of varying difficulty within a
set time limit. The evaluation was performed using CPLEX V12.6.0 [38] on a PC with a 3.4 GHz
quad-core processor and 16 GB RAM memory.

6.1 Example Process Simulation

We created a simulation model of a simple hardware maintenance process using CPN Tools [39].
The process knowledge used in this simulation is shown in Figure 4. This information was also
used in the creation of a HPAS problem instance, as discussed in Section 4.

The organisational model shows which activities from the process model can be executed by
what roles and at what location. Note that some activities require two resources to complete. It

15



Figure 4. The process knowledge for a simple hardware maintenance process, as used in our simulation

is assumed that the role of Senior Technician may also perform any job requiring a Technician.
Different process instances may involve different customers and hence different locations.

Both CPN Tools and our MILP scheduling implementation use discrete time. The minimum
and maximum job durations mentioned in Figure 4b are given in discrete time units, with the
realised job durations depending on worker efficiency linearly. The travel distance between the
Office location and the various Customers was set to 1 time unit.

Both the simulation and the HPAS instance were used to obtain schedules for the above process
description. Figure 5 and Figure 6 show the optimal schedule as provided by the CPLEX solver
and an example obtained from the simulation model. Comparing the simulated schedule and
the optimal one shows that under this human performance model it is more efficient to balance
workload and rest. This is also highlighted by the average utility of workers, which is 68 % in the
optimal solution and 90 % in the simulation model if jobs are executed as soon as possible.

Figure 5. The optimal scheduling of 3 process instances of the process described in Figure 4

Figure 6. An example schedule for 3 process instances generated by the simulation model of the process
described in Figure 4

6.2 Parameter Effects on Complexity

The scheduling problem that we address in this work has a large number of parameters. These
parameters influence the problem complexity and the size of the search space for a possible
solution. We are interested in finding out how these affect the difficulty of the scheduling problem,
and in particular how the inclusion of dynamic performance affects the difficulty of finding an
optimal or feasible schedule. Unfortunately, it is not feasible to test all possible combinations of
these parameters. Therefore the parameters are divided into four groups, each related to a specific
aspect of the scheduling problem: routing, skill requirements, worker efficiency and process control
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flow. We evaluated the solutions with and without taking into account each of the four aspects, for
a total of 16 different possible combinations.

The instances were generated randomly with a fixed number of jobs and workers, and other
parameters falling into a range depending on the selected aspect combinations. Each instance
included 20 jobs and 10 workers, which was based on memory and process time requirements
during initial testing and comparable to e.g. the instance sizes used in the evaluation of [33], [40].

For the routing aspect there was a setting with some basic movement of workers between
four different locations arranged sequentially. The network of locations was kept very simple
because initial tests showed that complex routing requirements would already result in very
difficult problems, even without taking into account the scheduling of the activities. Each job was
randomly assigned to one out of four locations. When routing was not taken into account each job
was assigned to the same location and workers had no need to travel.

For the skill requirement aspect we introduced 10 skill domains, similar to the instances
from [40]. The workers and jobs were divided randomly into three different groups of roughly
equal size: one requiring or possessing a single random skill, one requiring or possessing every
skill and one requiring or possessing half of the skills. When skill requirements were not taken into
consideration, there was only a single skill that every worker possessed and every job required.

The efficiency aspect introduced job-specific durations and effects on efficiency. Each job had
a 50 % chance to have a duration affected by worker efficiency. Each job also had an independent
50 % chance to have an effect on worker efficiency. When worker efficiency was not taken into
account each job had a fixed duration and no effect on worker efficiency.

The control flow aspect concerned the presence of job predecessors and choices between
jobs. In this setting there was a random set of generated procedures resulting in 10 precedence
constraints and 2 choices between alternative jobs. When the control flow aspect was not taken
into account there were no choices or predecessors amongst the scheduled jobs.

6.3 Complexity Results

For each of the 16 parameter aspect combinations introduced above we generated 20 random
instances for a total of 320 scheduling problem instances. The MILP implementation was given up
to 5 minutes to solve each scheduling instance. The results are shown in Table 2.

Table 2. The results of the evaluation, with time measured in seconds and also showing the percentage
of instances for which a feasible or optimal solution could be found within the time limit. Each scenario
consisted of 160 instances, i.e. 20 instances for each of the 8 combinations of the 3 other aspects.

Scenario
Average Time to Feasible after Average Time to Optimal after
Feasible (Stdev.) 300 seconds Optimal (Stdev.) 300 seconds

No routing 6.0 (24.2) 93 % 35.9 (52.4) 31 %
Routing 4.9 (15.7) 89 % 63.2 (67.7) 32 %
No skill requirements 2.5 (4.0) 100 % 35.0 (43.5) 49 %
Skill requirements 9.1 (29.8) 83 % 104.1 (86.7) 13 %
No worker efficiency 2.7 (7.4) 85 % 17.0 (27.5) 33 %
Worker efficiency 7.8 (27.0) 98 % 85.3 (68.9) 30 %
No control flow 1.2 (1.1) 100 % - (-) 0 %
Control flow 10.6 (29.7) 83 % 49.8 (61.8) 63 %

The results above show that for all scenarios the MILP implementation is able to find a feasible
solution for the majority of the scheduling instances within the given time limit. The inclusion
of an additional aspect generally increases the time required to find a feasible solution, but not
significantly. There were slightly more instances with a feasible solution when worker efficiency
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was taken into account, so including this aspect in the scheduling problem does not appear to make
it more difficult to obtain a feasible solution.

The results are quite different when considering the time and likelihood required to obtain an
optimal solution. For the inclusion of the routing, skill requirements and worker efficiency aspects
the average time required to obtain an optimal solution increased significantly. However, both
routing and worker efficiency appear to have little effect on the likelihood to obtain an optimal
solution. The inclusion of skill requirements did have a significant negative effect on both the time
and the likelihood required to obtain an optimal solution. Interestingly, in the absence of control
flow constraints the current implementation was not able to find any optimal solutions. Finding
an optimal solution appears to be highly dependent on the parameter settings, but the inclusion of
worker efficiency is not a major factor in the solver’s ability to obtain an optimal solution.

To explore why the implementation was unable to find the optimal scheduling solution in
the absence of control flow constraints, we performed a manual study of several easy problem
instances. It was found that the solver was able to find a solution that was actually optimal, but it
was not able to confirm the solution’s optimality within the time limit. This is most likely related to
the fact that in these instances the solver appears to explore and enumerate all possible orderings
of jobs within the other restrictions such as worker assignment. Upon reducing the size of the
generated problem instances to 10 jobs and 5 workers the solver was able to prove the optimality
of the discovered solutions within seconds. Repeated testing with increasing problem instance sizes
revealed that there appeared to be a cut-off point where the solver was no longer able to determine
optimality using branch-and-bound methods. At that point it reverted to enumerating all possible
job assignment combinations.

The above evaluation shows that the scheduling of activities affected by dynamic human
performance is a difficult problem. Even for a small simulated environment, the current model
often cannot be solved to obtain an optimal schedule, although finding feasible solutions is
generally possible. Additional research is required to show the application of dynamic human
performance in a real-life setting to demonstrate its value.

7 Conclusions

In this article we have shown how dynamic human performance may influence the scheduling
process. To the best of our knowledge, this is the first attempt to incorporate worker efficiency
as a concept into workforce scheduling and routing. For the sake of clarity, we assumed that
(1) job durations are affected proportionally by the worst performance level of assigned workers,
and (2) worker performances decrease when performing jobs proportional to their current levels.
Accordingly, we provided a formal description of the HPAS scheduling problem, and specified
feasibility conditions in Section 2. Then we discussed how various aspects from the field of
Business Process Management relate to the parameters of this scheduling problem and how
they can be established. We also formulated the HPAS scheduling problem as a MILP model.
Finally, we showed that scheduling instances of limited size can be solved by using our MILP
model. Regarding our experimentation, we may conclude that taking into account dynamic worker
efficiency does not significantly increase the hardness of solving scheduling instances that we have
generated compared to traditional extensions of the scheduling problem such as skill levels and
routing.

Although significant improvements are obtained in solving MILP models in the recent years,
our evaluation has shown that it remains an issue to obtain good-quality schedules in reasonable
times for larger instance sizes. Therefore, a possible research direction may be solving the
HPAS scheduling problem by smart enumeration methods like Branch-and-Price. This requires
to reformulate the problem as a master LP model, and applying column generation to solve that LP
model. In the reformulation, the columns may corresponds to routes or job sequences of workers,
and worker efficiencies may be decided by the master model.
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Another research direction is the development of a Large Neighborhood Search method for our
scheduling problem. In an LNS method, destroying and repairing heuristics should be carefully
designed such that the worker efficiency levels are maintained correctly after every improvement
iteration.

The main limitation of this work is that the evaluation was performed on a simulation model
of a business process. The way how worker efficiencies affect the realisation of schedules highly
depends on the type of industry sector and the processes and people involved. To increase the
realism of the efficiency model it is necessary to do case studies to apply our scheduling approach
in practice and study the results. With the advent of wearable sensor technologies, the first steps
have been taken to measure stress and workload in order to obtain the individual models of
performance that enable this.
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[2] P. Brucker, A. Drexl, R. Möhring, K. Neumann, and E. Pesch, “Resource-constrained
project scheduling: Notation, classification, models, and methods,” European Journal of Operational
Research, vol. 112, no. 1, pp. 3–41, 1999. [Online]. Available: https://doi.org/10.1016/S0377-2217(98)
00204-5
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