

Complex Systems Informatics and Modeling Quarterly

CSIMQ, Issue 10, March/April 2017, Pages 38–52

Published online by RTU Press, https://csimq-journals.rtu.lv

https://doi.org/10.7250/csimq.2017-10.03

ISSN: 2255-9922 online

Combining Tools to Design and Develop Software Support for

Capabilities

Martin Henkel
1*

, Christina Stratigaki
2
, Janis Stirna

1*
, Pericles

Loucopoulos
2
, Yannis Zorgios

2
 and Antonis Migiakis

2

1 Stockholm University, Universitetsvägen 10, 114 18, Stockholm, Sweden
2 CLMS Ltd, KD207, 4-6 University Way, London, United Kingdom

martinh@dsv.su.se, xristinastrathgakh@gmail.com, js@dsv.su.se
(orcid.org/0000-0002-3669-832X), periloucopoulos@icloud.com

(orcid.org/0000-0003-1395-5001), yz@clmsuk.com, a.migiakis@clmsuk.com
(orcid.org/0000-0001-6232-595X)

Abstract. Analyzing, designing and implementing software systems based on

the concept of capabilities have several benefits, such as the ability to design

efficient monitoring of capabilities and their execution context. Today, there

exist new model-driven methods and development tools that support capability-
based analysis, design, and implementation. However, there are also a plethora

of existing efficient development tools that are currently in use by

organizations. In this article, we examine how a new set of capability based
tools, the Capability Driven Development (CDD) environment, can be

combined with model-driven development tools to leverage both novel

capability-based functionality and the proven functionality of existing tools. We

base the examination on a case study where an existing model-driven tool is
combined with the CDD environment.

Keywords: Capability modeling, capability design, model-driven development,

Capability Driven Development.

1 Introduction

Organizational capabilities, representing the ability to handle resources such as people, goods,

and services, can be supported by and contain traditional software systems. For example, large

organizations may rely on standardized enterprise resource planning (ERP) systems. There are

also emerging software systems and tools that work as add-ons to support the strategic run-time

monitoring of capabilities and their execution context. Examples of these type of systems are

business dashboard systems, presenting well-defined business metrics. However, these types of

systems and their underlying development tools need to work together.

In this article, we present an approach that allows organisations to extend their existing

traditional software systems and development tools with novel tools that particularly support the

*
 Corresponding author

© 2017 Martin Henkel et al. This is an open access article licensed under the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/4.0).

Reference: M. Henkel, C. Stratigaki, J. Stirna, P. Loucopoulos, Y. Zorgios and A. Migiakis, “Combining

Tools to Design and Develop Software Support for Capabilities,” Complex Systems Informatics and
Modeling Quarterly, CSIMQ, no. 10, pp. 38–52, 2017. Available:

https://doi.org/10.7250/csimq.2017-10.03

mailto:js@dsv.su.se
http://creativecommons.org/licenses/by/4.0
https://doi.org/10.7250/csimq.2017-10.03

39

design and run-time monitoring of capabilities and their contexts. The purpose of the approach is

(a) to make it possible to compare the conceptual difference between existing tools and tools

targeting design and run-time monitoring of capabilities, (b) to make it possible to, on a case-by-

case basis, outline the benefits and effects of extending existing systems and tools with a new

toolset, and (c) to make it possible to discern which method and software integrations need to be

in place for such an extension.

To explain and elaborate the approach we describe how the combination of the following two

toolsets could be achieved:

 The Capability Driven Development (CDD) approach [1] contains methods and tools for the

design and run-time monitoring of capabilities.

 The zAppDev development environment is a model-driven development tool used for
creating traditional software systems.

In order to combine the two toolsets, the tools need to be compared and integrated. We here

outline four steps that can be followed to have a structured approach for selecting integration

options, these are elaborated in detail in the following sections:

1. Analyze tool overlap.

2. Select design time integration options.

3. Select run-time integration options.

4. Summarize tool support needed.

The reason for the desire to combine CDD with existing tools such as zAppDev, is twofold.

Firstly, a key component of CDD is the use of high-level graphical models, such as goal models,

that are commonly missing from existing development tools. Secondly, existing tools provide a

complete software development environment that may be used for creating complete software

systems. The models used in CDD have a broader focus, describing organisational capabilities,

their contexts, and goals. CDD does not include specific methods and tools for the detailed

creation of information systems. However, it does provide tools that allow the analysis, design,

and run-time monitoring of capabilities. This can be contrasted with traditional development

tools that focus on components of software systems, such as data objects, information

management procedures, user interface components, etc. Thus, combining the CDD approach

with other development tools and systems gives the possibility of having support for capability

analysis and monitoring (provided by CDD, or similar methods and tools) and the detailed

implementation of information systems (provided by existing tools).

The examination presented in this article takes the form of a generic approach that allows an

organisation to examine how CDD can be combined with existing tools. To illustrate the

approach: how CDD is applied in an “industrial symbiosis platform” implemented by CLMS

Limited is presented. The symbiosis platform is implemented using the state-of-art model-driven

development (MDD) tool zAppDev. As each step of the approach is described in subsequent

sections, we also describe how the MDD tool zAppDev may be combined with the CDD toolset.

The work presented in this article is an extension of our examination of zAppDev presented

in [2] and in this work we extend the examination with a deeper look at the conceptual tool

differences.

The rest of the article is structured as follows. Section 2 is giving the theoretical background

and the related work. Section 3 introduces the case study, industrial symbiosis, and the CDD

approach. Section 4 introduces the first step of the approach, an analysis of tool overlap.

Section 5 and Section 6 describe subsequent steps in the approach, focusing on design and run-

time options when combining existing tools with the CDD toolset. Section 7 contains a

summary of tool support needed. Section 8 consists of brief conclusions.

40

2 Background

In this article, we use the concepts of capabilities and their context. These concepts have been

described in the field of strategic management, enterprise modeling, and in research on

contextual systems. The tools that we are describing moreover are based on the concept of MDD.

In strategic management the notion of dynamic capability [3] can be used to describe the

ability of an organisation to evolve and thrive in changing environments. In management,

dynamic capabilities are important because failure to change can endanger an organizations

profitability or even its existence [4], [5]. The definition of the concept of capability itself has

fluctuated somewhat in the area of strategic management; however, there is a tendency to

associate it with the organisation of resources and their allocation [6]. In this article, we use this

interpretation of capability, that is, we view resources and their use as an integral part of

capabilities. We define a capability as the ability and capacity that enable an enterprise to

achieve a business goal in a certain context [1].

In the area of enterprise modeling and enterprise architecture, the concept of capability has

been used as a mean to analyse organisations [7], [8]. It has also been used to describe an

organization’s ability to use enterprise architecture. This is most notable in the open groups

TOGAF framework [9], where capability frequently refers the readiness of an organization to

use enterprise architecture. Regarding strategic management and enterprise modeling, the

contribution of this article is to show how the notions of capability and context can be realised,

rather than adding to the existing methods and conceptual foundation of capability analysis and

architecture.

Examining the research in contextual systems, it can be said that a focus has been on providing

extensive and formal descriptions of the context, as well as on the development of context-aware

systems. Generally, a context can be defined as information that can be used to characterize a

situation of an entity [10]. We elaborate this definition in Section 3. The relationships of an

entity (such as an organisation, or an organisational capability) to its environment are a part of

the context. Ontologies have been proposed by several authors as a mean to formally describe

contextual information. For example, in [11] and [12] the use of ontologies for context

descriptions is central. There is also a class of systems referred to as context-aware systems that

make context information an integral part of the IT systems. For example, [13] propose a system

that in run-time replaces (software) services with adapted versions. Similarly, there have been

proposals on how to design systems architectures for context aware systems, see for example

[14] and [15]. What these context aware systems have in common is that they replace existing

systems, or require substantial modification of existing systems. In contrast to this, the approach

presented in this article provides a light-weight approach to extend existing systems with the

ability to handle capabilities and their context.

Model-Driven Development, MDD is a software development approach, where graphical

models are essential parts. Models are not only considered as system documentation or analysis

tools but are considered equal to code [16]. MDD enables developers to create abstractions in

terms of models, of what needs to be built, or the problem domain, as opposed to abstractions of

how it will be done [17]. Those abstractions, or models, help in filling the problem-

implementation gap that separates the problem domain from the software solution [18]. MDD

tools naturally support the use of models, and based on the models the generation of code, or the

execution of the models [19]. A challenge pointed out in [20] is to integrate MDD tools that use

different modeling languages for different domains. One way of addressing this challenge is to

integrate different domain specific modeling languages (DSLs). Good examples of this

integration approach can be found in [21] and [22] that both provide means to integrate modeling

languages. Compared to previous approaches the approach presented in this article is addressing

integration issues in another way. Instead of integrating languages and creating a new unified

model, this approach accepts that two tools (such as the CDD and the zAppDev tool) may be

41

used in parallel to exploit the advantages of each. The approach is not formalized and has no tool

support in itself, but instead, focuses on providing stepwise guidance.

3 Introduction to the Industrial Symbiosis Case and CDD

This section provides an overview of how capability and context analysis was performed in the

industrial symbiosis case. This follows the CDD approach, as defined in [1].

Industrial symbiosis is an association between two or more industrial actors in which the

wastes or by-products of one become the raw materials for another. This collaboration between

two or more companies is called a synergy. Traditionally, experts and consultants, involving

highly complex, labor-intensive and error-prone tasks, manually performed the industrial

symbiosis mediation process for matching between producers and consumers. However, the

company CLMS has implemented an industrial symbiosis platform that is improving industrial

symbiosis by automating the process of mixing and matching the interests of different actors in

the waste resource chain, and by providing knowledge-based support for managing resources and

finding compatible ones. The platform suggests compatible matches to a company and facilitates

the creation of synergies for these matches.

For the purpose of improving the industrial symbiosis case, an identification of the capabilities

within the business was done. Capability identification is the process of finding the capabilities

that the business relies on to function. Identification can be done in several ways. For example,

an identification based on recursive capability refinement is described in our earlier paper [7].

Moreover, the identification can be based on concept models, process models or goal

models [23].

A small excerpt of the capability model is shown in Figure 1. Central to the business was, in

this case, the capability to enable web industrial symbiosis (Capability 1 in Figure 1). This

capability relies on it being true that a relevance rating can be determined for each symbiosis

(Capability 1.1), that the resources can be described properly (Capability 1.2) and that the

symbiosis is compliant with regulations (Capability 1.3). One example of the need for

compliance with regulations is that the transport of hazardous goods is regulated. Capability 1 is

dependent on the other capabilities, this is shown by using rhombs in Figure 1.

Figure 1. Excerpt from the capability model for the symbiosis case

Given the identified capabilities their operational context could be analysed. We start here

with the definition that context is any information that can be used to characterize the situation

[10] in which the capability can be provided. Procedures for defining the context can be found in

[23]. From an analysis perspective, the identification of the context for a capability is based on

questioning the assumptions under which the capability is working. More simply put, the context

can be identified by asking questions such as “What external conditions affect the performance

of the capability?”. “External” in this case means that the organisation should not be able to

control the capability context. Typical contexts that are clearly out of the control of the

42

organisation are legislation, weather, and even to some extent the behaviour of customers or

external (IT) systems. Moreover, it is of interest to focus on external conditions that affect the

capability as a whole, rather than a single instance of a capability. For example, the context in

form of legislation may affect all ongoing work and future outcomes of a capability, while a

change in how a single customer is sending their goods may only affect a limited part of ongoing

work. Based on this discussion we make the definition in [10] specialized so that the context of a

capability is the external information that affects the ability or capacity. This more specialized

definition allows an analyst to focus on issues that may go undetected if only examining the

regular flow of information that is used in a capability.

Figure 2 contains a small part of the context model for the capabilities in the symbiosis case.

In the figure, we apply the CDD context model syntax to describe the context. A context element

denotes the context, while a measurable property denotes a specific way to measure the context.

Essentially, a context element can be based on one or several measurable properties. A context

set is used to group potential ranges of context element values, these ranges are the expected

values under which the capability can work. In Figure 2, it is shown that the resource description

capability is affected by the context in the form of matching health (a context element),

measured by the amount of relative matches in the system (a measurable property).

Figure 2. Excerpt from the CDD model depicting context information

The context model shown in Figure 2 can be extended by also introducing means to cope with

changing contexts. For example, variation aspects could be described so that each can define

how to handle certain context values.

The CDD approach is supported by a set of tools, covering both design time and run-time

needs:

 Capability Design Tool (CDT). This is the design time environment for creating capability

and context models. For example, diagrams such as shown in Figure 2 can be drawn using

the CDT.

 Capability Navigation Application (CNA). This is a run-time tool used to monitor the

context of a capability. Essentially, the current values of each context element are shown.

The CNA can also signal whether the capability needs to be adjusted to accommodate

changes in the context.

 Capability Context Platform (CCP). This run-time tool works as a message broker that

enables the monitoring of complex measurable properties from several context providers.
The CCP continuously sends aggregated context information to the CNA.

The CDD approach also uses the concept of Capability Delivery Application (CDA) to denote

the operational IT support system that a capability has. For example, the CDA can be in the form

of an ERP system or a more specialized system that is a part of a capability. In our case, the

symbiosis platform is the CDA.

While CDT is used purely for design purposes, the CCP and CNA are used at run-time.

Figure 3 shows a logical overview of how these tools are used in run-time for the industrial

symbiosis case. For this symbiosis case, the context information is sent to the CCP from both

external sources (legislation changes) and from the CDA (amount of successful matches and

transport information). The CNA is used for calculating the context elements based on the

measurable properties given by the CCP. The context element is displayed as indicators that can

Context Set 2

Resource description

and classification

Capability 1.2

is affected by

Context Element Range 2.1

[Poor (0-20%), Stable (20-50%),

Good (50-65%),Very Good (65-

100%)]

Context Element 4

Matching health

Measurable Property 6

Relative amount of successful

matches

measured by

43

be viewed by a manager, moreover changes in the context element can trigger changes in the

CDA's symbiosis matching algorithm.

Figure 3. overview of the symbiosis case use of the CDD tools

Note that even though these tools are defined in the context of CDD, the concepts of context

provider (CCP), context display/navigation (CNA) and operational IT system (CDA) are generic.

Thus, the approach is generic, even though it is described in terms of CDD.

4 Analyse Tool Overlap

If an organization uses a MDD tool (such as the zAppDev tool used in the symbiosis case) for

design, it may be difficult to know which paths of the development should be combined, or used

together with the CDD tools. Some concepts are unique for CDD tools, such as capability

design. Other concepts, such as context elements and measurable properties, may have

corresponding or overlapping concepts in the MDD tool. In an MDD tool such as zAppDev, the

model concepts used are serving the need of developing more complete and domain oriented

applications. It was noticed during the analysis of the symbiosis case that concepts on a high

business level such as goals were not part of the model-driven architecture specification of

zAppDev MDD tool.

Given the potential overlap of functionality between the CDD and the zAppDev an analysis of

the conceptual differences between the tools was performed. The analysis was performed in

three steps: (1) Identification of the concepts that the existing MDD tool uses, (2) Comparison of

the existing MDD tools concepts with those of the CDD toolset, (3) Decision about the

conceptual alignment of the tools. In practical terms, the three steps were performed first by a

person that was experienced with the use of the CDD toolset and familiar with the zAppDev tool.

A second validation was then done by a person experienced with CC, but also more experienced

with the use of zAppDev.

In the following, we describe each of these steps and provide examples from the use of the

zAppDev MDD tool in the symbiosis case.

Identification of the existing MDD tool concepts. The purpose of this step is to understand all

the concepts used in the MDD environment so that they can be compared with the tool support

provided by the CDD toolset. Input for this step may be a specification of the existing MDD tool,

or user manuals. Typically, it is also very helpful to have an example of how the tool is used in

an existing application. The result is a list of concepts being used in the MDD tool. Table 1,

column 1, shows a subset of the concepts being used in the zAppDev MDD tool. While the

concept of using a domain model and data transformation (Table 1) is common in MDD tools, it

is interesting to note that the zAppDev tool employs IDEF0 functional process diagrams

(Figure 4) to describe the logic of a system.

Information on
• Resources
• Transport

options

Context information:
Relative amount of
successful matches,
Availability of
transport information

CNACCP

CDA
(i-symbiosis

platform)

Symbiosis
matching algorithm

Context element
calculation

Indicator
display

Manager

Indicator
monitoring

Context information:
(aggregated)

Adjustment
information

Context
information:
Legislation
changes

User

44

a) b)

Figure 4. Example of differences – a) zAppDev IDEF0 does not exist in CDD, b) zAppDev data

transformations correspond to context element calculation in CDD

Table 1. Example of overlapping concepts’ table

zAppDev MDD

tool concept

Corresponding

CDD Concept

Correspondence

(semantics, abstract syntax, and concrete syntax)

Functional model.
Drawn using the

IDEF0 syntax.

Contains functions,

input, output,

controls and

mechanisms.

Process, Process
variant

A zAppDev functional IDEF0 model consists of functions connected
with data flow, while processes in CDD have activities connected with

control flow. There is a semantic correspondence between functions and

activities, and processes and functions. However, the interconnection of

activities using control flow has only a syntactical correspondence to the

use of data flows in zAppDevs functional model. The control flow used

in CDD is simply not the same thing as data flow used in the zAppDev

functional model.

Variation aspect A variation aspect in CDD is something that makes a capability to be

executed differently. A similar concept in the zAppDev functional

model is the IDEF0 control flows. A control flow enables or disables the

execution of a function. However, a variation aspect can be seen as

collection of variables, or information from the context, while a function

control flow typically is a low-level variable. Thus, the correspondence

is only on an abstract syntax level.

Domain model and

business objects.
Groups of concepts

in the domain

models forms
business objects in

zAppDev.

Context

element,

Measurable

property

Context elements are used in CDD to represent contextual information

that is affecting a capability. The domain model, and associated business

objects, in zAppDev are used to design all information that the system

should handle. Thus, a context element is a form of specialization of the

contents of a business object. The correspondence is on an abstract
syntax level.

Data

transformations.

Enable the mapping

of two business

objects.

Context element In CDD the context element represents an aggregation of one or several

measurable properties. A measurable property can be considered as

“raw” measurement, while a context element represents the
transformation of the properties into a high-level interpretation. For

example, the weather measurements 25 degrees and sunny may be

translated into “good weather”. In zAppDev there is a general concept

used for this kind of transformation called “data transformation”. Thus,

there is a correspondence in functionality on the abstract syntax level.

Comparison of MDD tool and CDD tool concepts. The goal of this step is to identify

similarities and differences on a conceptual level between the concepts used in the MDD tool

and the CDD tool. The input for this step is the listed MDD tool concepts from the previous step.

45

The output from the step is a table with the concepts that overlap between the MDD and the

CDD, and a description of the overlap.

 Note that even if both tools contain a similar concept, such as goals, it may be used slightly

differently in each tool. For example, goals in CDD are related to a capability on the business

level, while a goal in MDD tools may be defined on a much lower (operational) level. To help

clarify the differences between the concepts used in the tools we use a simple three-level

comparison based on the UML [24] concepts of concrete syntax, abstract syntax, and semantics.

If the concepts share only concrete syntax the concepts are named in a similar way, but have

different meaning and are used differently. If the concepts share abstract syntax, the concepts

have the same meaning, but may be used differently. For example, the concepts may be used on

a different abstraction level. If the concepts have the same semantics, the concepts in CDD have

the same use and meaning in the MDD tool.

An excerpt of the result of comparing the zAppDev tool and CDD are shown in Table 2.

Table 2. Actions to be taken for overlapping concepts

zAppDev

concept

Corresponding

CDD Concept

Correspondence

(semantics, abstract syntax,

and concrete syntax)

Actions to be taken (examples)

(stop using, define difference, integration)

Functional

model

Process, Process

variant

Semantical correspondence

between functions and

activities, and processes and

functions.

Integration should be examined.

Syntactical correspondence of
control flow to the use of data

flows. Data flow in zAppDev

more fine grained and

concrete.

The difference is deemed too big for
successful integration. Also, there is little

chance of mistakes due to the overlap. The

difference is clearly defined in the tools.

Variation aspect Abstract syntactical

correspondence between

variation aspects and zAppDev

control flow.

Integration should be examined.

Domain

model and

business

objects

Context

element,

Measurable

property

Abstract syntactical

correspondence between

context element and business

objects. Both represent

information.

Integration should be examined.

Data trans-

formations

Context element Abstract syntactical

correspondence. A context

element contain what is similar

to a data transformation in

zAppDev.

The use of context element is more precise

than the use of zAppDev transformation.

The difference can be defined such that all

contextual elements are defined in CDD and

not in zAppDev.

Decision on how the two toolsets should be aligned. The objective of this step is to select the

method of managing the overlap in functionality between the two tools. The input to the step is

the list of conceptual overlap produced in the previous step. The output is a decision on how to

handle each overlap. If there is no overlap, no action needs to be decided upon. However, if there

is an overlap that is not handled it may lead to the duplication of functionality. To aid the

decision on how to handle overlapping concepts we have created three options that provide

guidance:

 Stop using the concept in either MDD and/or CDD. This is to avoid confusion and possible

errors. For example, if the MDD tool supports goal modeling, a decision may be made to

stop using that functionality in favour of the CDD goal modeling.

 Define the differences between the concept used in MDD and CDD. Define this without
overlap. Make rules such that the concept will not be used in the same way.

46

- Example 1: Goal modeling in CDD may be used for high-level business goals, while in

MDD the goals may be on a lower level, perhaps related to a single use case.

- Example 2: The information model in a MDD tool may have a detailed description of

the information needed for each capability instance, while in CDD the context models

may be on a more global level.

 Integration. Make sure concepts from CDD can be synchronized with the MDD concepts.
This option and its implications are discussed in the next section.

Table 2 summarizes the potential options for the symbiosis case and the zAppDev tool. Note

that the table is an extension of the previous table.

Applying the above approach to analysing the difference between an existing tool and the

CDD toolset leads to a better understanding of how the tools may be used together. In the next

section we will explore the various options for tool integration.

5 Selecting Design Time Integration

The objective of this step is to decide how to integrate the design time tools of CDD and other

tools that are currently in use. The design time tool of CDD is the CDT.

At design time, the components of the CDT environment and existing tools can be combined

in several different ways. Depending on the overlap of the tools, and the desired design time

functionality we have identified the following three options for performing design-time

integration:

 Side-by-side. Consider using the CDT as a side-by-side analysis tool that complements the

existing tools. Essentially, this means that the CDT and the existing tools are used in

parallel, and no integration is performed. On a general level, this option is useful if there is

no overlap in the concepts used by the tools. This option is suitable when the CDD tools are

just used for analysis purposes, and there is no need or desire to directly implement the CDD

models in an IT system. The effect of choosing this option is that CDD is used as a side-by-

side tool without any integration with the existing tools.

 CDT as a starting point for using the existing tools. Using this option means that the models

in CDT are used as input to create the initial solutions in the existing tools. A CDT model

can be transformed into a model in an existing MDD tool, or be used to generate code or

configurations that can be further edited in existing tools. For example, the context models

(Figure 2) could be the base for creating an information model in a MDD tool, or an initial

database schema in a DBMS. This option is useful if there is some form of overlap of the

models, since some conceptual resemblance is needed to generate code or models from

CDT. The effect of using this option is that initial models, code or configurations will be

generated. However, the connection between CDD tools and the existing tools is one-way.

 Two-way integration between CDD and existing tools. This is similar to the option of using

the CDD as a starting point. However, here there is also a two-way integration, meaning that

when changes are performed in the existing tool they should automatically be propagated to

the CDD as well. The effect of using this option is that designers can work in an iterative
fashion, performing updates in both the CDD and existing tools.

Table 3 can help in picking the desirable design time integration option. Note that the actual

choice can be a combination of the above options, since each type of model in the CDT may use

its own form of integration. An application of the options in the symbiosis case is described in

Table 3.

47

Table 3. Design time integration options

Option When to use Integration effort Effect

Side-by-

side
No or little conceptual

overlap between CDD and

existing tools.

- CDD is used side-by-side with the

existing tools.

CDD as

starting

point

Clear overlap between

CDD and existing tools.

CDD models commonly

more abstract.

A model transformation

from CDD model to models,

code or configurations in the

existing tool is needed.

The use of the existing tools is

guided by an initial input from the

CDD design. The existing tool is

used to refine the models.

Two-way

integration
Clear overlap between

CDD and existing tools.

CDD models and existing
tools on the same level of

abstraction.

Both existing tools and CDD

tools need to be extended

with synchronisation.

The designer can use both CDD and

existing tools, models are

synchronized both ways.

The design time integration options rely on the fact that the conceptual overlap has been

successfully identified in the previous step (“Analyze tool overlap”). For example, if the models

are on different abstraction levels this difference would have been identified during the analysis.

A concrete example of this is where one tool uses platform independent models (PIM) and the

other tool uses platform specific models (PSM), this would be identified as a difference in the

abstract syntax. In this concrete example, the CDD as a starting point or two-way integration

may be chosen (see Table 3). The approach presented here currently does not provide any further

guidance on how the tools should be integrated technically. The integration effort (Table 3) may

very well be affected by the tools technical implementation, for example, the absence of

application programming interfaces (APIs) may make integration difficult or impossible.

5.1 Design Time Options in the Symbiosis Case

In the symbiosis case CLMS use the advanced zAppDev MDD tool to develop the symbiosis

platform. We here describe two cases of how the CDT and zAppDev tools can be integrated at

design time using the CDD as the starting point for the existing tools option.

CDD context model to zAppDev domain model. Comparing CDD and zAppDev a conceptual

overlap can be found the CDD context models and zAppDevs domain models. A domain model

in zAppDev depicts the information that the system is processing. By model transformations

built into zAppDev the domain models become a relational database schema. The context

models in CDD contain the concepts used for describing the context of a capability. If desired,

the context model could be used as the basis for generating a domain model. By importing the

CDD model into zAppDev, a solution engineer could get a draft of the context concepts needed

in the domain model.

CDD variation aspect to zAppDev IDEF0 controls. A variation aspect in CDD describes a set

of context elements that affect the execution of a capability. In essence, there can be variations of

the execution of the capability that are affected by the variation aspect. If a capability is

implemented as a process, the variation may be in the form of execution of different control

flows in the process. zAppDev does not directly contain the concept of variation aspect.

However, the IDEF0 diagram in zAppDev has the notion of control flow. A control flow in this

case works as a variable that is enabling/disabling a function in the IDEF0. Thus, the control

flow could be generated from the CDD variation aspects. This would enable a change in context

also to enable a function as defined in the IDEF0.

48

6 Selecting Run-Time Integration

The purpose of this step is to decide how to integrate the run-time tools of CDD and the IT

system currently supporting the capability under study.

At run-time the CDD tools, namely, CNA and CCP, can provide a valuable addition to an

existing IT system, or a system that is being designed. Using the CDD nomenclature such a

system is denoted CDA – Capability Delivery Application. The CDA can be implemented using

a model-driven tool, or using a traditional development environment. While CDD can be used as

a design-time aid, there are additional benefits using it in run-time to extend the existing systems.

We here distinguish between two options of run-time use; as a monitoring tool and as an

adjustment tool. The two options and sub-options are discussed below.

6.1 Monitoring Tool Extension

Using the CPP and CNA as monitoring tools entails making use of the CNA to monitor the

context of capabilities. That is, the existing system can be extended by allowing the users to

monitor the context using the CNA. For this purpose two variants can be selected:

a) Side-by-side monitoring. In this option, the CDD is treated as an add-on to existing systems,

and no run-time integration is performed. CDD is simply used to monitor how the context

changes. For this option to be useful, the context must be defined so that it is not a part of the

CDA. Otherwise, an integration is needed to extract the context information from the CDA.

Typically, side-by-side monitoring can be used for context elements that are affecting

several instances of a capability, while context elements that are bound to a single instance

are commonly an integral part of a CDA.

b) Integrated monitoring. This option can be used when the context information is held within

the CDA. Typically the context information is local, that is it describes the context of a

single capability instance as it is executing. For this option, there is a need to implement a

data provider in the CDA that sends information to the CCP. Since the CNA is designed for

handling global context, there is also a need to perform data aggregation.

Table 4 provides an overview of the monitoring options, and the effect and integration effort

they come with.

Table 4. Summary of run-time monitoring options

Option When to use Integration effort Effect

Side-by-side
monitoring

Context information is not a
part of the CDA. Typically the

context element is global.

- The CNA is used as a stand-alone
tool for monitoring.

Integrated
monitoring

The CDA hold context
information. Typically the

context element is local.

CNA and CDA have to be
integrated, the CDA has to

provide context data.

CNA can be used to show context
information from the CDA

system.

Note that a special case of when side-by-side monitoring should be selected is if the existing

CDA does not support run-time monitoring at all.

6.2 Adjustment Tool Extension

The CDD environment supports adjusting capabilities to match changes in the context. This is

performed by the CNA, that based on current context values can propagate adjustments to the

CDA. In an ideal case the adjustments can be designed and implemented, and then used at run-

time when the context changes. However, this fully automatic handling is not realistic in many

49

cases. For example, some adjustments may need to be manually designed and applied when the

context changes. An example of this kind of adjustment is when changes need to comply with

new regulations – changed regulations may have a complex impact on the system, which may be

impossible to foresee. For each context element, there is thus a need to discern whether a fully

automatic adjustment can be made, or if a manual adjustment is a better option. To guide the

adjustment selection, we below describe three options ranging from fully automatic to manual.

a. Fully automatic. This option allows the run-time discovery of context changes, and the

triggering of adjustment running capabilities to cope with these changes. This requires that

(1) the CNA has access to the context element, (2) that the CDA is able to receive

information about needed changes, and (3) that the CNA is able to notify the CDA when

changes should occur. The effect of implementing this option is that the system can perform

changes.

b. Semi-automatic. In this option, the system can detect changes in the context and suggest

adaptations that are manually implemented. For example, this is a useful option if the

changes needed are in the form of manual routines. This option requires that (1) the CNA

has access to context elements, and (2) that manual adaptations are defined. One option for

defining manual adaptations is in the form of patterns. For example, in a help-desk, there

may be two different manual routines for answering questions under a high load compared

with a low load situation (in this example the current load is considered a part of the

context). The effect of using this option is that the system can suggest changes.

c. Manual. For some context changes it may be difficult to adapt automatically, or even suggest

how to address them. An example of this mentioned earlier is the adaptation to new

legislation. However, in this case, the context can be monitored with the help of CDD tools,

and when a change occurs it can be handled manually. For example, a change in legislation

may be monitored in order to start a manual analysis of the impact of the change when it

occurs. This option requires no run-time integration with the CDA. The effect of using this

option is that the system can discover changes.

Table 5 gives an overview of the effects, integration effort and recommendation of when to

use each of the run-time adaptations options.

Table 5. Summary of run-time adaptation options

Option When to use Integration effort Effect

Fully
automatic

It is possible to implement fully
automated adaptations that can be

triggered at run-time based on

context information.

The CDA and CNA have to be
integrated, the CNA has to be able

to receive adaptation advice.

The system (CDA+CNA)
detects the need for, and

perform changes.

Semi-
automatic

It is possible to design a set of
adaptations, such as process

variants, but these cannot be

activated automatically.

The adaptation has to be defined, for
example as a pattern, but not

implemented. CNA and CDA do not

need to be integrated.

The system suggests
changes.

Manual The need for changes can be

detected, but the change in itself is

too complex to implement.

The CNA only has to monitor the

context. No integration with the

CDA needed.

The system discovers

change needs.

6.3 Run-Time Options in the Symbiosis Case

The i-Symbiosis platform is built using the zAppDev MDD tool and it can be integrated with the

CDD runtime tools CCP and CNA. As an example, consider the context as shown in Figure 2.

The measurable property “Relative amount of successful matches” is a part of the CDA

constructed by using zAppDev. By using the guidelines in Table 5, we select the monitoring

option integrated monitoring. The reason for this selection is that the information is held within

the CDA. This choice has the implication (see Table 5) that the CDA needs to relay the changes

50

of the measurable property to the CCP, which in turn sends it to the CNA. This is done by

implementing a CCP data provider. The CNA is then used to monitor the context element (this

means that the CNA will display values from the context element range such as “Poor”, “Stable”,

etc., see Figure 2).

7 Summarize Tool Support Needed

In this step an overview of the integration need is created, to enable the planning of the

integration implementation. Essentially, the options selected in steps 2 and 3 can be summarized

in one large list. This list will include the types of integration options that are needed for a case.

If there is a need to perform one single type of integration several times this may be the impetus

to implement a generic and reusable solution. For example, there might be several context

elements that have been selected for the option integration monitoring at runtime. In this case, it

is beneficial to implement a generic integration that allows the existing development tool to

create the needed integrations for all these elements. On the other hand, if only one context

element needs integration monitoring at runtime it may be more cost-effective to perform the

integration without having to change the existing development tool or implement generic

integrations.

For a tool vendor, the run-time and design time options selected will have an impact on the

type of integration that the tool has to support.

Table 6 summarizes the integration needs per option. Note that some options do not affect the

existing tool at all. For a tool to have the full support of CDD most, if not all, of the integration

options should be supported.

Table 6. Summary of integration needs

Type Option Development tool support needed

Design time Side-by-side -

CDD as starting
point for existing

tools

A model transformation from CDD model to a model in the tool is
needed.

Two-way

integration

Both existing tools and CDD tools need to be extended with

synchronisation.

Run-time

monitoring

Side-by-side

monitoring

-

Integrated

monitoring

The existing tool has to be able to create a CCP data provider so that the

CDA can provide context data.

Run-time
adaptation

Fully automatic The existing tool has to be able to implement an interface such that the
CDA can receive adaptation advice from the CDA.

The existing tool needs to enable the definition of adaptations, and map

them into the created interface.

Semi-automatic -

Manual -

8 Conclusions

In this article, we have examined how tools for capability analysis and monitoring can be

combined with existing MDD development tools. The examination is generic, in the sense that it

is outlining tool and model independent steps for tool combination. However, the examination is

based on the capability-driven approach CDD, and the zAppDev MDD tool. The result is an

introduction of a four-step approach that allows the comparison and integration of tools. The first

step, a conceptual comparison of tool functionality, leads to the identification of tool overlap. In

51

the second step, design-time options are selected such that a potential system analyst and/or

developer can work with both CDD and existing MDD tools. The third step includes selecting

run-time options, enabling the potential interconnection of the executable result of the CDD and

the MDD tools. The last step involves an overview of the potential changes that need to be made

to existing development tools.

The four-step approach has been described using the nomenclature of CDD, an approach for

capability analysis and design. However, the approach is sufficiently generic to be applied to

other methods and tools as well.

Acknowledgments. This work has been partially funded by the EU-FP7 funded project

no. 611351 CaaS – Capability as a Service in Digital Enterprises.

References

[1] S. Bērziša, G. Bravos, T. Cardona Gonzalez, U. Czubayko, S. España, J. Grabis, M. Henkel, L. Jokste,

J. Kampars, H. Koç, J.-C. Kuhr, C. Llorca, P. Loucopoulos, et al. “Capability Driven Development: An

Approach to Designing Digital Enterprises,” Business & Information Systems Engineering, vol. 57, no. 1,

pp. 15–25, 2015. Available: https://doi.org/10.1007/s12599-014-0362-0

[2] M. Henkel, C. Stratigaki, J. Stirna, P. Loucopoulos, Y. Zorgios and A. Migiakis, “Extending Capabilities With

Context Awareness,” in International Conference on Advanced Information Systems Engineering Workshops,

Springer, vol. 249, pp. 40–51, 2016. Available: https://doi.org/10.1007/978-3-319-39564-7_4

[3] D.J. Teece, “Explicating Dynamic Capabilities: The Nature and Microfoundations of (Sustainable) Enterprise

Performance,” Strategic Management Journal, vol. 28, no. 13, pp. 1319–1350, 2007. Available:

https://doi.org/10.1002/smj.640

[4] P.G. Audia, E.A. Locke and K.G. Smith, “The Paradox of Success: An Archival and a Laboratory Study of

Strategic Persistence Following Radical Environmental Change,” Academy of Management Journal, vol. 43,

no. 5, pp. 837–853, 2000. Available: https://doi.org/10.2307/1556413

[5] R.R. Wiggins and T.W. Ruefli, “Schumpeter's Ghost: Is Hypercompetition Making the Best of Times

Shorter?,” Strategic Management Journal, Wiley, vol. 26, no. 10, pp. 887–911, 2005.
Available: https://doi.org/10.1002/smj.492

[6] G. Schreyögg and M. Kliesch‐Eberl, “How Dynamic Can Organizational Capabilities Be? Towards a Dual-

Process Model of Capability Dynamization,” Strategic Management Journal, Wiley, vol. 28, no. 9, pp. 913–

933, 2007. Available: https://doi.org/10.1002/smj.613

[7] M. Henkel, I. Bider and E. Perjons, “Capability-Based Business Model Transformation,” in Advanced

Information Systems Engineering Workshops (CAISE’14), Springer International Publishing, pp. 88–99,

2014. Available: https://doi.org/10.1007/978-3-319-07869-4_8

[8] J. Stirna, J. Grabis, M. Henkel and J. Zdravkovic, “Capability Driven Development – an Approach to Support

Evolving Organizations,” in The Practice of Enterprise Modeling, Springer Berlin Heidelberg, pp. 117–131,

2012. Available: https://doi.org/10.1007/978-3-642-34549-4_9

[9] Open Group Standard, “TOGAF – Enterprise Architecture Methodology,” Version 9.1., 2011. Available:
http://www.opengroup.org/togaf/ (accessed 17.02.2017)

[10] A. Dey, “Understanding and Using Context,” Journal of Personal and Ubiquitous Computing, Springer, vol. 5,

no. 1, pp. 4–7, 2001. Available: https://doi.org/10.1007/s007790170019

[11] R. Hervás, J. Bravo and J.A. Fontecha, “Context Model Based on Ontological Languages: a Proposal for

Information Visualization,” Journal of Universal Computer Science, vol 16., no. 12, pp. 1539–1555, June 28,

2010. Available: https://doi.org/10.3217/jucs-016-12-1539

[12] P. Moore, B. Hu and J. Wan, “Smart-Context: a Context Ontology for Pervasive Mobile Computing,” The

Computer Journal, Oxford University Press on behalf of The British Computer Society, vol. 53, no. 2, pp. 191–

207, Feb. 1, 2010. Available: https://doi.org/10.1093/comjnl/bxm104

[13] T. Chaari, D. Ejigu, F. Laforest and V.M. Scuturici, “A Comprehensive Approach to Model and Use Context

for Adapting Applications in Pervasive Environments,” Journal of Systems and Software, Elsevier, vol. 80,
no. 12, pp. 1973–1992, Dec. 31, 2007. Available: https://doi.org/10.1016/j.jss.2007.03.010

https://doi.org/10.1007/s12599-014-0362-0
https://doi.org/10.1007/978-3-319-39564-7_4
https://doi.org/10.1002/smj.640
https://doi.org/10.2307/1556413
https://doi.org/10.1002/smj.492
https://doi.org/10.1002/smj.613
https://doi.org/10.1007/978-3-319-07869-4_8
https://doi.org/10.1007/978-3-642-34549-4_9
https://doi.org/10.1007/s007790170019
https://doi.org/10.1093/comjnl/bxm104
https://doi.org/10.1016/j.jss.2007.03.010

52

[14] M. Baldauf, S. Dustdar and F. Rosenberg, “A Survey on Context-Aware Systems,” International Journal of Ad

Hoc and Ubiquitous Computing, Inderscience Publishers, Geneva, SWITZERLAND vol. 2, no. 4, pp. 263–

277, Jan. 1, 2007. Available: https://doi.org/10.1504/IJAHUC.2007.014070

[15] S. Vale and S. Hammoudi, “COMODE: A Framework for the Development of Context-Aware Applications in

the Context of MDE”, in Proc. the 4th International Conference on Internet and Web Applications and Services

(ICIW’09), IEEE, pp. 261–266, 2009. Available: https://doi.org/10.1109/ICIW.2009.44

[16] M. Völter, T. Stahl, J. Bettin, A. Haase and S. Helsen, “Model-Driven Software Development: Technology,

Engineering, Management,” Wiley Software Patterns Series, Wiley, Chichester, pp. 448, 2013. Available:

https://books.google.de/books?id=9ww_D9fAKncC&hl=de

[17] D.C. Schmidt, “Model-Driven Engineering,” IEEE Computer Society, IEEE, vol. 39, no. 2, pp. 25–31, 2006.

Available: https://doi.org/10.1109/MC.2006.58

[18] R. France and B. Rumpe, “Model-Driven Development of Complex Software: A Research Roadmap,” Future

of Software Engineering, IEEE Computer Society, pp. 37–54, 2007. Available:

https://doi.org/10.1109/fose.2007.14

[19] M. Henkel and J. Stirna, “Pondering on the Key Functionality of Model Driven Development Tools: The Case

of Mendix,” in Perspectives in Business Informatics Research, Springer Berlin Heidelberg, pp. 146–160, 2010.

Available: https://doi.org/10.1007/978-3-642-16101-8_12

[20] J. Whittle, J. Hutchinson and M. Rouncefield, “The State of Practice in Model-Driven Engineering,” IEEE

Software, IEEE, vol. 31, no. 3, pp. 79–85. Available: https://doi.org/10.1109/MS.2013.65

[21] B. Hoisl, M. Strembeck and S. Sobernig, “Towards a Systematic Integration of MOF/UML-Based Domain-

Specific Modeling Languages,” in Proc. the 16th IASTED International Conference on Software Engineering
and Applications, ACTA Press, pp. 337–344, 2012. Available: https://doi.org/10.2316/p.2012.790-045

[22] G. Giachetti, B. Marín and O. Pastor, “Integration of Domain-Specific Modelling Languages and UML

Through UML Profile Extension Mechanism,” International Journal of Computer Science and Applications,

Technomathematics Research Foundation, vol 6, no. 5, pp. 145–174, 2009. Available:

http://www.tmrfindia.org/ijcsa/v6i56.pdf

[23] K. Sandkuhl, H. Koç and J. Stirna, “Context-Aware Business Services: Technological Support for Business

and IT-alignment,” in Business Information Systems Workshops, Springer International Publishing, pp. 190–

201, May 22, 2014. Available: https://doi.org/10.1007/978-3-319-11460-6_17

[24] OMG, “Unified Modeling Language”, Version 2.5, The Object Management Group, document formal/15-03-

01, 2015. Available: http://www.omg.org/spec/UML/2.5 (accessed 27.11.2016)

https://doi.org/10.1109/ICIW.2009.44
https://books.google.de/books?id=9ww_D9fAKncC&hl=de
https://doi.org/10.1109/fose.2007.14
https://doi.org/10.1109/fose.2007.14
https://doi.org/10.1007/978-3-642-16101-8_12
https://doi.org/10.1109/MS.2013.65
https://doi.org/10.2316/p.2012.790-045
https://doi.org/10.1007/978-3-319-11460-6_17

