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Abstract. The distributed design process for safety-critical embedded systems 

has become an increasingly difficult challenge: Electronic Control Units 

(ECUs) in vehicles, for instance, participate in many vehicle functions, while 

each vehicle function, in turn, is spread across several ECUs. Many suppliers 

participate in systems design and many partial functions are reused from past 

projects, not always knowing the assumptions at the time of their development. 

In particular, efficient allocation of safety mechanisms and a sound safety case 

are difficult tasks for original equipment manufacturers (OEMs). Contract-

based development has gained popularity as an approach for supporting 

distributed development by explicitly annotating assumptions and guarantees to 

components, but an integrated process covering specification of nominal 

behavior and safety has not been described so far. We present such an 

integrated development approach that encompasses the systematic breakdown 

of nominal system behavior using contracts, the consistent derivation of safety 

analysis by interpreting several types of contract violations as a specification for 

failure modes, and the subsequent integration of safety mechanisms that cover 

these failure modes through safety contracts. The approach equally fits 

hardware and software and is therefore applicable on the system level. We 

demonstrate it by an electric drive example. The extensibility of our approach 

towards Cyber Physical Systems, which compose themselves at runtime, is 

briefly outlined at the end of the article. 

Keywords: Embedded systems, functional safety, contracts, component-based 

development, safety analysis. 

1 Introduction 

For a long time, embedded systems have been known as small, closed computing systems with a 

restricted purpose, deeply integrated in products, such as automobiles, industrial machinery, and 

consumer goods. Over the years, however, embedded systems have grown dramatically in 

computing power and in the number and complexity of functions they perform. In automobiles 

or industrial production systems, nowadays many automation functions are spread over a large 

number of interconnected processing nodes, and their development involves many different 

suppliers. Typical examples are advanced driver assistance functions as, for instance, automated 

parking or highway pilot. These functions involve many electronic control units (ECUs), such as 
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the engine, steering system, braking system, and ECUs for various types of sensors. Each of 

them, in turn, is involved in performing various functions at the same time: Automated Parking, 

Lane Keeping Assist, or Adaptive Cruise Control all access the camera set, influence steering 

and powertrain actuators, and possibly share common processing resources. The complexity of 

the vehicle architecture is also resembled by lower architectural levels, i.e., on the level of 

system, hardware, and software architecture within each ECU; because each of these ECUs itself 

consists of a complex network of components implemented in diverse technologies (e.g., analog 

and digital hardware circuitry, microcontrollers with a complex software running on them, 

FPGAs, sensors of different kinds, actuators, mechanical parts). Engineers from various 

disciplines and companies have to collaborate to get the function working correctly. 

Due to their interaction with the physical world, most embedded systems in the automotive, 

industrial control, aerospace, or medical domains have also high reliability demands and are 

classified as safety-critical, which requires application of dedicated safety standards, such as ISO 

26262 [1] or IEC 61508 [2]. These standards require, on top of a required process maturity and 

quality management, a systematic design flow, including tracing and justified breakdown of 

requirements, safety analysis in order to identify potential failures and their consequences, and 

the definition of safety mechanisms to mitigate the consequences of these failures. All of this 

must be subject to rigid verification and validation before the start of production for the system. 

1.1 Current situation and problem statement 

The V-model is today’s most common development process model in many application fields of 

embedded systems, in particular, in the automotive domain. It is also the underlying model 

recommended in ISO 26262. According to this model, at first, the requirements derived for an 

embedded system must be correctly captured and then decomposed into allocable sub-

requirements and assigned to components. This entails complex design decisions on how to 

distribute sub-tasks in an appropriate manner, involving, for instance, decomposition of signal 

accuracies or reaction time onto budgets for specific functional blocks of a controller chain. 

Usually, negotiation with potential suppliers is necessary about what is feasible. On the one 

hand, the inherent collaboration require formalisms that all parties understand (e.g., based on 

textual languages or graphical notations) that are, both sufficiently intuitive and sufficiently 

expressive to deal with all kinds of components and their various properties. On the other hand, 

it is desirable to aim at formalized notations wherever possible to avoid ambiguities and 

misunderstandings and in the ideal case to perform formal verification of the relevant correctness 

and safety properties. 

Unlike suggested by the V-process, industrial practice today differs in several areas: 

 No strict top down process: Often, a predecessor system already exists and shall be 

extended or adapted, or at least partially reused from previous projects (we could call this 

practice a bottom-up process, because it builds the system architecture out of existing 

building bricks and evaluates the achievable overall functions at the end). In any case, the 

development is an iterative and sometimes tentative process: it may run into a dead-end, 

requiring the architect to revise former decisions, resulting in an alternation of top-down 

and bottom-up phases. All of these introduce deep iteration cycles in the process where 

incompatibilities between components are only detected during the integration phases of 

the ascending branch of the V. 

 Re-Use of components or usage of commercial-of-the-shelf components: There are 

cases, in which the engineer decides to use components originally designed for another 

system or a different purpose. In order to ensure compatibility, rigorous analysis is 

required. In many cases, however, specific details about the implementation may not be 

available due to trade secrets and intellectual property rights, which implies a black box 

view. 
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Contract-based development (see, e.g., [3]) appears as a suitable framework for addressing 

these issues. Contract-based development extends component-based development by stating 

assumptions and guarantees for any component on any level of the architectural hierarchy. 

Guarantees make explicit what behavior and service quality a component, which can be regarded 

as a black box, exhibits at its outer interface. Formalized assumptions state what the developer 

has been taken for granted when developing the component. Contracts can be used in a top-down 

and bottom-up process, and, depending on the language used for stating them, more or fewer 

checks for correctness of the refinement and composition of components can be automated. 

Contracts have gained high acceptance as an intuitive formalism, and semi-formal languages 

have been proposed to make them applicable for engineers from different disciplines without 

formal background (see previous work [4]); assertion specification languages today can cover 

many relevant properties, such as timing or accuracy of values. 

Contract-based development is based on the idealistic assumption that contracts verified 

during the design phase are always fulfilled during operation. Safety, however, needs to consider 

the impact of failures that will lead to a violation of contracts during operation. Hence, we 

identify the third problem: 

 Alignment between nominal behavior and safety aspects: Functional safety is still 

handled quite distinctly from the development of the nominal function. The models used 

for safety analysis are often not aligned with the system models, and a consistent 

integration of system architecture, safety analysis and technical safety concept is often 

missing. This leads, in the best case, to inefficient processes, but, in the worst case, to 

safety risk due to inconsistencies or overlooked failure possibilities. Consistent integration 

of nominal function development and the safety process is still not achieved, as there is no 

formal passage from specification of the intended system to safety analysis models that 

identify situations where the system does not behave correctly and to safety-centered 

design extensions that assure a sufficient level of safety even in the presence of failures.  

To boost integration and efficiency of the safety process, it would be greatly beneficial to 

provide a safety engineer with techniques that integrate well with the component-based design of 

the system and refer to the components, ports, signals, assumptions, and guarantees for 

formalizing failures. The safety-focused design process (i.e., Safety Analysis and creation of 

Functional and Technical Safety Concept acc. to ISO 26262) could in turn profit from using the 

same contract-based methodology as the development of the nominal function, but in this 

instance involving safety contracts, for which typical patterns already exist. Like the 

development process, the safety process is also tentative and iterative (note that the safety 

mechanisms themselves may also be subject to failure or even introduce new hazards) and 

continues in cycles until repeated analysis shows that the risk of remaining safety violations is 

sufficiently low, which is determined by some qualitative and quantitative criteria provided in 

the safety standards, such as ISO 26262 or IEC 61508. A safety-integrated development process 

will have to reflect all of these needs. 

1.2 Contribution of this article 

We propose a component-based approach addressing the challenges stated in Section 1.1 using 

contracts. Our special attention is on the integration of the safety aspect. Using contracts also in 

the safety domain is basically not new (see discussion below), but some aspects have not yet 

sufficiently been addressed. 

In this paper, our contribution is three-fold: 

 We summarize our recent work in the area of contract-based development of safety-critical 

embedded systems, mainly resulting from the SPES_XT research project [6]. In particular, 
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we refine and extend our approach by converting component contracts and interface 

contracts into each other. These contracts are integrated in a rigid procedure for refining 

system requirements and allocated to components. In this regard, this paper is an extension 

of our previous publication [7]. 

 We introduce an innovative approach that bridges the gap between the nominal function 

and the safety concept development of the system by automating parts of the safety 

analysis: we interpret different types of contract violations (i.e., failure to deliver the 

specified behavior for the nominal case) as formal definitions for failure types, which are 

then fed into a safety analysis based upon the Component Fault Tree (CFT) technique. This 

approach may save much of the work necessary for safety analysis by not only building 

upon the system architecture model created during the normal development, but also 

profiting from the definition of guarantees, examining the various possibilities for their 

violation based on a failure type system related to the type system of different kinds of 

signal flows. 

 Finally, we combine these two steps into a novel design- and safety-process for complex 

systems to make it applicable to industry practitioners, covering (1) systematic 

decomposition of the requirements for the nominal function onto components, (2) 

systematic analysis of component failures and their consequences, and (3) systematic 

definition of safety requirements to cope with these failure consequences and decomposing 

and allocating these onto (safety) components in the same manner as in step (1). 

1.3 Outline 

The rest of the paper is organized as follows: in Section 2, we provide a basic overview on 

contracts-based design, specification languages, and related work. Section 3 introduces our 

approach for applying contracts and explains the differences and relationship between 

component and interface contracts. Section 4 illustrates how to apply them in a structured and 

modular development process. In Section 5, an example of an electric drive system is used to 

demonstrate the application of our approach. Section 6 concludes the paper and gives an outlook 

on our current research to extend our approach to the field of cyber-physical-systems, which 

assemble at runtime using insecure and unreliable communication links. 

2 Fundamentals and related work 

In this section, we give a short introduction to contracts and contract-based design along with 

some validation methods. Additionally, specification languages for contracts are discussed and 

component-oriented safety analysis techniques are briefly outlined. Since these topics are quite 

extensive we will also refer to some fundamentals and only shortly outline related work. 

2.1 Contract-based design 

Contracts have initially been proposed by Bertrand Meyer for verification of sequential software 

programs, using preconditions (that must hold at program entry), postconditions (that must hold 

at program exit) and invariants (that must hold all the time). Later, the idea of contracts has been 

transferred to component-based software and system development and called “contract-based 

design”. The paradigm of component-based system development defines systems as hierarchical 

compositions of components that exchange information, energy, and/or mass flow at their 

interfaces, also called ports. Contracts are assertions that allow formulating black-box 

specifications of components. They explicitly distinguish between assumptions about their 

operational environment and the guarantees they provide under the condition that these 

assumptions are fulfilled. Following the definition in [3], contracts explicitly handle pairs of 
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properties, respectively representing a system’s or component’s assumptions on the environment 

and the guarantees that this system or component promises, provided that these assumptions 

hold. The separation into assumptions and guarantees serves as a foundation for building a sound 

theory that allows the reasoning about the composition of systems in a formal way, provided that 

formal specification languages and proof systems are applied. But even if applied in a semi-

formal way or using natural language, contract-based development can be beneficial for 

supporting a structured way of communicating the expectations of component manufacturers and 

system integration and still offer the possibility of verification by human experts [4]. In the past 

couple of years the research on contract-based systems engineering has increased dramatically 

(for an overview see [3]). The preconditions are interpreted as assumptions of a component on 

the signals provided at their input-ports and their operational environment; the post conditions 

are guarantees that the same component is able to fulfill. Accordingly, contracts are matching 

pairs consisting of an assumption (A) or a conjunction of several assumptions, and a guarantee 

(G) as provided in Figure 1. The assumption specifies how the context of the component, i.e., the 

environment from the point of view of the component, should behave. Only if the assumption 

holds, then the component will behave as guaranteed. This kind of specification allows replacing 

components by other ones with the same purpose and compatible interfaces, if they accept the 

same or weaker assumptions about the environment and provide the same or stronger guarantees 

towards the environment. A complete re-validation of the entire system after the exchange of 

some of its components is not necessary if the new components fit into the old contracts, and if 

they have been verified on their own to fulfill their guarantees, provided that the assumptions 

hold. This can reduce costs dramatically in case of later changes to the safety-critical systems 

requiring proper certification. The essential point is that the system decomposition can be 

verified with respect to contracts without the knowledge of the concrete implementation. 

 

System A

c
a

b

Assumption: a occurs 

each 50ms.

Guarantee: Whenever 

a occurs, c occurs 

during [10ms,14ms].

Subsystem A1 Subsystem A2

Assumption: a occurs 

each 50ms.

Guarantee: Whenever 

a occurs, b occurs 

during [5ms,8ms].

Assumption: b occurs 

each 50ms with jitter 8ms.

Guarantee: Whenever b 

occurs, c occurs during 

[5ms,6ms].

 

Figure 1. Example for a contract specification. 

One advantage of using contracts is that they can help decrease the complexity of verifying the 

implementation against its specification. For example, consider the system in Figure 1, to which 

a contract is assigned. The system contract states that the system expects a triggering of the input 

port 'a' every 50 ms, and, when it is triggered, the system has to respond by sending an event on 

port 'c' within a specific time interval. The system is decomposed into two subsystems each with 

one contract, and some internal behavior modeled, for instance, by state machines. Assume that 

the functionality on subsystem A2 depends on the output of subsystem A1. Further, assume that 

the subsystems would not be annotated with contracts. Thus, to validate the contract of the 

overall system A, the composed behavior of both subsystems has to be computed, which 

generally leads to large state spaces. Using contracts for A1 and A2, we can omit the 

composition and validate the sub-contracts locally. 
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2.2 Formal underpinning and validation of contracts 

Formally, contracts are defined as pairs of assumptions and guarantees:        . The 

refinement relation between two contracts   and    is defined as follows:   refines  , if      

and     . The validation of contracts works as follows: When a component is decomposed 

into a set of sub-components, we have to check whether the overall contract         (which 

also will be called global contract) and all subcontracts            (also called local 

contracts) for           are consistent. We check the following virtual integration condition: 

 

(1)                          

(2)                      
 

An in-depth discussion about virtual integration can be found in [8]. In [8] contracts were 

extended by so called weak assumptions. Weak assumptions are used to describe a set of 

possible environments in which the component guarantees different behaviors. This separation is 

only methodological, and does not affect the semantics of the definition of the original contracts: 

Let          
      

          be a contract consisting of a strong assumption   , a set of 

weak assumptions    
, and a set of corresponding guarantees    for    . Semantically, we 

map   to a standard contract of the form          , where      
      

     
      

 

   . For timing and sporadic fault occurrence recognition the validation has already been done in 

[9]. For other aspects this may, however, be more difficult, which is one reason to also consider a 

methodological approach. We propose the methodological separation between component and 

interface contracts described in Section 3. 

2.3 Related work regarding contract-based development 

Contract-based design has shown many evidences of its applicability in industry. There have 

been proposals for the usage of contracts to specify real-time properties of continuous-valued 

controller structures and the control error of technical systems (e.g., [10]). Contracts have been 

applied to UML/SysML models as well as Simulink models (e.g., [11]). Contracts can be 

specified in a natural language, in a set of semi-formal languages (such as template-languages) or 

in formal languages. Natural language contracts are often accompanied by ambiguity, 

incompleteness, or inconsistency. Some proposals have been made with semi-formal languages 

(the syntax is defined and restricted, but verification has to be performed by human experts) to 

avoid these drawbacks of natural language while providing an understandable language for 

experts from different domains [4]. Text patterns, consisting of static text elements and 

attributes, also provide well-defined semantics so that a consistent interpretation of the system 

specification between all stakeholders can be ensured. To cope with the needs of the different 

aspects of a design, various sets of patterns have been defined [12], they build upon parametrized 

requirements patterns that have been known for a long time (e.g., [13], [14]). Many research 

contributions about contracts rely on formal languages, such as temporal logics [15] or IO-

Automata [16]. Temporal logic is used in [17] for decomposing the system architecture with 

contracts. The framework automatically generates a set of proofs. Formal languages allow 

automatic verification of refinement and implementation of contracts, but they are often hard to 

understand for practitioners from the different disciplines involved and therefore it is difficult to 

promote them in industry. Moreover, depending on the language, their expressive power is more 

or less limited. For instance, many of them cannot deal with real time and with continuous 

values, which are required for describing mechatronic systems. A proposal that bridges this gap 

is the pattern-based Requirements Specification Language RSL [18] or the Contract 

Specification Language CSL from the SPEEDS project [19], which provide parametrized text 

patterns in a well-understandable language while providing formal semantics. 
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Contract-based design has been proposed also in the functional safety domain (e.g., 

[20],[21],[22] and many others). Safety ADD (see [23]) helps to define and verify the safety 

contracts for software components in a graphical editor. The algorithm traverses all assumptions 

and guarantees to make sure that they match. A tool for checking the refinement between 

contracts called OCRA (Othello Contracts Refinement Analysis) was presented in [8]. It provides 

means for checking the contracts specified in a pattern based language called Othello, which are 

later translated to a linear-time temporal logic for discrete and real-time constraints. The 

underlying engine allows reasoning whether contract refinement is correct. A full range of safety 

mechanisms, such as definitions of faults and failures, fault containment, safety mechanisms, 

handling the degradation modes and safe states at multiple abstraction levels, is proposed in [24]. 

The interface between the safety view and the functional design is highlighted as well. Multiple 

safety patterns are provided in LTL [15] notation.  

2.4 Component-oriented safety analysis  

As the aim of this paper is an integrated process for designing the nominal system function and  

safety aspects, we now draw attention to safety analysis. Here we can build upon a long series of 

research contributions aiming at integrating safety analysis techniques and component-oriented 

design of embedded systems. Safety analysis of various types is a mandatory activity in all 

relevant safety standards. It serves for the purpose of systematic identification of faults or 

failures that could lead to the violation of safety goals or safety requirements and for identifying 

their root causes (cf. [1], Part 9, Clause 8.4.9). There is a wide range of applicable techniques; 

most of them can be classified as either deductive (or “top-down”), a popular example being 

Fault Tree Analysis (FTA) that reversely searches potential reasons for given hazards, or 

inductive ( “bottom-up”), a popular example being Failure Mode and Effects Analysis (FMEA) 

that identifies basic failure modes and searches for their potentially dangerous consequences. 

Over the past decades, many proposals have been presented to better integrate systems design 

and safety assurance, and to make safety analysis techniques more modular and consistent with 

the system architecture. One of the first approaches building upon the assumption that failures 

propagate along the interfaces between components was Hazard and Operability Studies 

(HAZOP) [25], which originally came from chemical industries. Another example of an early 

component-based failure analysis techniques is Failure Propagation and Transformation Notation 

(FPTN) [26], which highlighted the fact that failures propagate along the signal paths from one 

component to another, which means that failures at component output ports can either be caused 

internally or propagated by failures at the input ports. Moreover, failures can also be transformed 

into other failure modes (e.g., a too low actual value at the input of a proportional-integral 

controller will result in a too high actuator command at its output) or even mitigated (no failure 

mode is observable at the output of a component, although there is a failure present at the input). 

This observation will be used when we propose our approach for a contract-based safety concept 

in Section 4.3. A component (e.g., a sensor) that cannot guarantee that a failure mode at its 

output never occurs, can still be used in a safety-critical system in combination with another 

component downstream in the signal flow, which is capable of detecting and mitigating the 

failure (e.g., by model-based diagnostics and the possibility to mark the output value as 

“invalid”, if this leads to a safe state of the system). 

 Interface-focused FMEA (IF FMEA) as a part of Hierarchically Performed Hazard and 

Propagation Studies [27] is another analysis technique that investigates failures by port interfaces 

of components. In the same way as IF FMEA interprets the traditional FMEA technique onto 

components with interfaces, Component Fault Trees (CFTs) [28] extend traditional Fault Trees 

by introducing a concept of components, along with “failure ports”, by which failures propagate 

from one component to another. The integration of CFTs with rich component models was 

further improved by [29]. Meanwhile, prototypical tools have been presented that generate CFT 
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structures from SysML [29] and from Simulink [30] system models. In [29], the failure 

keywords from HAZOP were used with the failure classification scheme from [31] to propose 

the unified hierarchical failure type system shown in Figure 2, which will serve as the contract-

based failure classification in Section 4.2. 

Failure Mode (FM)

FM_Value FM_TimeFM_Provision

FM_Omission FM_Comission FM_High FM_Low FM_Early FM_Late
 

Figure 2. Failure Type System (adapted from [29]) 

[29] further proposes a sub-refinement of failure classes using attributes (e.g., to what extent is 

it too high?). If necessary, failure modes can be sub-classified, in particular, into safe and 

dangerous failures, e.g., “speed too high by more than 5% but not more than 20%” can be 

labelled “safely too high”, “speed too high by more than 20%” can be labelled “dangerously too 

high”. 

A general issue when deriving failure propagation models from signal-flow-oriented 

component-based system models is that the system models in most cases contain cycles (e.g., 

closed loop control), but failure models, such as CFTs, are restricted to directed acyclic graphs. 

This problem and possible solutions have been discussed in [29] and [30]. 

3 Development process using interface- and component-contracts 

This section explains how to capture, refine, and allocate requirements using contracts while 

creating the hierarchical system architecture. Our aim is addressing both the top-down process 

from requirements towards implementation by step-wise refinement (see Section 3.4) and the 

bottom-up process where a system is composed of pre-existing and pre-qualified components 

described by assumptions and guarantees. 

The term “multi-aspect” contract refers to the possibility to make assertions about different 

system aspects, as for instance: 

 Reactions on stimuli or conditions becoming true 

 Timing aspects in terms of delays between stimuli and reactions 

 Signal quality, e.g., accuracy of values w.r.t. a reference value in the physical world 

We distinguish two flavors of contracts that have their specific advantages at different points 

of the development process: component contracts and interface contracts. 

3.1 Interface contracts 

The relationship between assumptions of a specific component to guarantees of its neighbors 

(i.e., predecessor and successor in terms of signal flow) can best be captured by an interface 

contract. Each assumption is linked to one specific input port and each guarantee is linked to one 

specific output port. The assertions to be expressed may be of the same type, and the language 

for assumptions and guarantees may also be the same. The guarantees of a signal producer 

component must imply the assumptions of the corresponding signal consumer component(s). 

Interface contracts are often made between neighbor components, which share the same super-

component. However, if an input comes directly from an input port of the super-component or an 

output feeds directly an output port of the super-component, the stated assertions are propagated 

to the next higher level in the system hierarchy and matched with the super-component’s 
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assumptions and guarantees. Unfulfilled contracts, i.e., assumptions that are not satisfied by 

corresponding guarantees can be detected and highlighted automatically, which has been 

demonstrated by a prototype tool in [4]. Figure 3 illustrates the concept of interface contracts. 

Super Component

Ci-1 Ci Ci+1

Guarantee:

output.imprecision<10mA

Assumption:

input.imprecision<10mAContract
Guarantee:

output.imprecision<20Nm

Assumption:

input.imprecision<30Nm

Contract
 

Figure 3. Signal quality example of interface contracts 

Assumptions and guarantees for interface contracts are easy to derive for a system architect, if 

he has denoted assertions to each signal at certain “probing points”. E.g., a signal representing a 

physical event (e.g., acceleration value getting higher than a specified limit) can be tagged with 

an accuracy or delay assertion. This assertion marks the weakest acceptable guarantee for the 

component that produces the signal at its output port, and the strongest assumption for the 

component that consumes the signal at its input ports. Specifying the meaning of such assertions 

requires sometimes referring to signal characteristics at a given point, as seen by an omniscient 

external observer (a role, which is actually taken by the system architect). In case of accuracy, 

for instance, this might be the absolute difference of the signal at that point with respect to some 

physical quantity in the physical world, in case of delay – the physical time elapsing between a 

condition change in the outside world and an event (e.g., voltage edge or software service call) 

generated at some output port of the component. 

3.2 Component contracts 

What is an advantage of interface contracts for the system architect as an omniscient observer, 

turns out to be a drawback for the component supplier: when the aim is to treat components as 

reusable entities out of context, it is not possible to reference to any part of the physical 

environment outside the integrated system. Instead, other types of requirements are preferred, for 

example, “An event at the output shall be issued no later than x milliseconds after some 

condition noticed at the input”. These are the types of guarantees the component may promise, 

under no assumptions, or under other assumptions regarding environmental conditions (e.g., 

environmental temperature, voltage supply, processor resources) or assumptions about input 

signals (e.g., events not occurring more often than with a certain frequency, values staying in 

certain ranges). To specify contracts in this style, we recommend the usage of component 

contracts. Component contracts are contracts between a system (e.g., a component) and its 

operational context. They allow assumptions and guarantees affecting the component as a whole 

(e.g., environmental conditions that do not relate to any specific input or output ports) and allow 

for relationships between behaviors at two or more input or output ports.  

3.3 Passing from interface to component contracts 

There exists a semantic relationship between component contracts and interface contracts. The 

meaning of an interface contract is that the component asserts to behave in a way, such that 

certain guarantees associated with provided signals at some of its output-ports are implied by the 
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fulfillment of a set of assumptions assigned to delivered signals to some of its input-ports. 

Hence, a component Cx has to fulfill the following specification: 

 

(3)                                           . 

 

When integrating the component Cx into a system environment, the inputs and outputs of 

different components are connected to each other. For instance, let the input In1 of the 

component Cx (we will use the notation Cx.In1) be connected by a signal to the output Out1 of the 

component Cw, and the output Out1 of the component Cx to the input In1 of Cy, then these 

components engage in interface contracts with each other: 

(4)                                                      

                                                                             

(5)                                                               

                                                                             

Each interface contract is made between neighbor components (interface contract 1 between 

Cw and Cx, interface contract 2 between Cx and Cy), without involving the super component (or 

system).  

Let us assume, components are constrained to negotiate only with their super-component, 

being unaware of their (future) neighbors. This is a typical case for a Component-out-of-Context 

supplier. How would the same set of statements be interpreted? The environment (i.e., super 

component, including all neighbor components supposed to be there) would guarantee to the 

candidate component Cx that all of its assumptions are met, whereas requiring from this 

component to fulfill all of its guarantees. The candidate component Cx, in turn, must assert that it 

assures all of its guarantees, provided that its assumptions hold. This would be equivalent to the 

following statement: 

(6)                                                  . 

 

From Cx’s point of view, this can be interpreted as part of a component contract, which would 

mean in natural language as: “I assume nothing specific and I guarantee that I will react on input 

signals with properties A1,…, An at my inputs by providing output signals compliant with Gi at 

my output [within the defined time span, with the defined accuracy and so on]”. Of course, in 

most practical cases the assumptions for any given technical component will not be empty (true), 

but contain general conditions for well-functioning of the component (e.g., supply voltage or 

temperature ranges for hardware components, and memory budget or correct scheduling for 

software components). The distinguishing feature, however, is that now the component engages 

in a contract with its respective environment and doesn’t need to know its neighbors and that the 

assumptions and guarantees refer to the component as a whole and not to one single port (i.e., 

may state input-output-relationships).  

3.4 Proposed top-down process  

In the following, we propose a sequence of rigorous activities for the development process. We 

first address the top-down development process as described by the V model, i.e., recursive 

refinement and allocation of requirements for some technical system to the proposed system 

architecture. Then, we mention the aspects of verification of a correct decomposition, followed 

by a level allowing the technical design and implementation. This verification will include the 

verification that the components are compatible to each other at their interfaces, as well as the 

verification that the combination of the given components, in exactly the way defined by the 
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architecture, assures fulfillment of the requirements (guarantees) of the super-component, 

provided that the assumptions of the super-component are fulfilled. We will use interface 

contracts and component contracts during these process activities. 

Starting Point: Let S be some system to be developed with given external interfaces, a given 

set of requirements regarding its behavior (this could be some signal to be provided continuously 

according to a control law with a required accuracy, or an event to be triggered with a specified 

maximum delay counted upon some external condition becoming true) and a given set of 

assumptions about its environment (e.g., some external values always being within certain limits, 

some external events occurring sporadically with a minimum time interval in between, etc.).  

The task is to decompose the requirements, to propose a suitable architecture consisting of 

components and connections in between, and then to allocate the decomposed requirements onto 

the designated (sub-) components C1 … Cn of the system, thereby verifying that the refinement is 

correct. This refinement continues recursively to subcomponents, sub-subcomponents etc., until 

a granularity of components is reached that allows to switch to a more technical viewpoint, 

where each components is associated with an implementation either as a hardware component or 

as a software component which is deployed to some hardware component. 

For doing so, we propose to proceed as follows in Figure 4, which is based on a simplified and 

fictitious example of an airbag system: 
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Figure 4. Use of contracts in the design of a Car Airbag System. 

1. The requirements engineer receives the requirements usually in some informal notation or 

natural language, checks them for completeness, consistency and understandability, 

clarifies remaining questions, and finally rephrases the requirements as a set of atomic 

assertions in a selected notation (RSL or CSL, for instance). These requirements become 

the guarantees that the whole system will have to fulfill. Similarly, the assumptions about 

the operational environment (e.g., value ranges of inputs, occurrence frequency of events) 

are clarified and captured in the same notation; these form the assumptions for the whole 

system (see No. 1 in Figure 4). These assumptions and guarantees constitute the first 

component contract, where the system to be developed is considered as the subject 

component and any operational context, under which it will have to operate, is considered 
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as its environment. If assumptions and requirements are not yet fully known, guesses must 

be made and revised in later design iterations.  

2. The architect decomposes the system into components, specifying their interfaces (input 

and output ports) and use the mass/energy flows or signals that connect the components via 

their ports. To each component and each signal its respective purpose or meaning is 

assigned (which can be in a natural language description, such as, e.g., “detects a crash 

event by evaluating the acceleration sensor value”). All signals are listed in a signal 

dictionary. A structured way for deriving functional architectures in SysML and refining 

requirements from use cases is explained in [32]. In this process step, not only the 

qualitative functions (what has to be performed?) need to be decomposed, but also the 

quality properties (such as timing or accuracy), which often needs budgets (e.g., total 

reaction time) to be distributed among the components in a processing chain. This usually 

involves consultations and negotiations with domain experts or with the suppliers or 

designers of the individual components. The architect may structure this negotiation 

process by tentatively specifying assertions that are meant to hold at different “probing 

points” (signals) in the architecture (see No. 2 in Figure 4). The architect acts in this step as 

an “omniscient observer”, i.e., any event or physical magnitude at any point of the system 

or even in the environment of the system may be referred to.  

3. In the architecture, each signal is produced at exactly one output port of one component, 

and it is consumed by one component or by several components at some of their respective 

input ports. Thus, the assertions from the previous step can be interpreted as interface 

contracts as follows: The producer of a signal must guarantee its specified assertions (or 

something that is stronger than that), whereas the consumer of the signal may rely on the 

fulfillment of this assertion (or something weaker as that) as an assumption (see No. 3 in 

Figure 4). For example, if the assertion regarding the “crash detection” signal was “the 

maximum delay after a crash is 20 ms” and we know that this signal is produced by a 

component “Crash Sensor” and consumed by a component “Airbag Controller”, then we 

can annotate the assumption “the maximum delay after a crash is 20 ms” to the respective 

input port of the ”Airbag Controller” and the same statement as a (yet unconfirmed!) 

guarantee to the respective output port of the “Crash Sensor”.  

4. As mentioned in Section 3.2, interface contracts are benefiting for the system architect but 

not for the component suppliers. For instance, the architect of a car airbag system can 

claim that an ignition command at the input of the “Ignition Unit” is provided at maximum 

25 ms microseconds after occurrence of a high acceleration of the vehicle. The 

manufacturer of the “Airbag Controller” that issues the ignition command, can, however, 

give no guarantee regarding this time, simply because he has no knowledge about the 

acceleration of the vehicle and the performance of other components in the overall system. 

He can guarantee, however, that an ignition command is issued at maximum 5 ms after the 

acceleration value at the output exceeds the limit defined as a crash condition, i.e., confirm 

a defined relationship between events at its input and output. This means that a transition 

from interface contracts to component contracts is made (see No. 4 in Figure 4). Hence, it 

is possible to specify sub-components as reusable standalone components, which can be 

bought from some external supplier.  

5. The resulting component contracts for the components on the low level of the architectural 

hierarchy only consist of propositions that refer to the observable behavior at the outer 

interface of the component of interest and describe its input-output-behavior. Therefore, 

the guarantees that the component has to fulfill can be formulated as requirements to the 

component. In addition to the requirements, the assumptions granted to the component can 

also be delivered to the supplier to provide certainty about properties of the usage 

environment and allow him some optimization by excluding irrelevant environmental 

conditions. 
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Actually, there are two different engineering steps occurring in top-down development: 

refinement (passing from one level of hierarchy to the next lower level) and concretization 

(passing from the functional specification to a technical solution, by allocating functions to 

actual software functions or electrical or mechanical components). We assume that usually the 

refinement comes first and the allocation onto technical component takes place only on the 

lowest level of the hierarchy. However, we observed in many industrial projects that both aspects 

are often intertwined, which is not an obstacle for the application of our approach. An example 

of concretization and negation for a car braking system in the context of the AUTOSAR 

framework can be found in Section XII of [3].  

3.5 Adaptation from a top-down to a bottom-up process 

As mentioned in the introduction of this article, the top-down process from requirements to 

implementation as proposed by the V-model is by far not the only practical development process. 

Very often, components are reused from past projects or bought off-the-shelf, or components 

involving innovative technologies have been developed out-of-context by suppliers and are then 

proposed to various original equipment manufacturers (OEMs) to build solutions around. Many 

systems in automotive and other industries are, from the beginning, planned as extensions or 

variant projects on the basis of products that are already in the market. A flexible development 

process should be able to reflect all of these cases and allow bottom-up proceeding as well. The 

advantage of the proposed proceeding is that it works in both ways, since the transfer from 

interface contracts into component contracts can be reversed. Therefore, it is adaptable to any 

mix of top-down and bottom-up activities, including iterations of top-down and bottom-up 

phases. The steps introduced in Section 3.4 can be used in a rearranged sequence in order to 

handle different cases.  

4 Integration of safety assurance with development 

Safety could, at first glance, be considered as just another qualitative property of the system. For 

example, the Automotive Safety Integrity Level (ASIL) might be annotated as an attribute of a 

signal. But even if an ASIL-attribute somehow represents a suitable measure for safety, making a 

system safe involves much more, in particular, a systematic search for hazards that could arise 

from using the product, a systematic derivation of safety requirements to counteract these 

hazards, and their application to a next iteration of the design, in addition to the existing 

requirements regarding nominal behavior. While systematic faults in system design and software 

implementation might be reducible to a large extent by sound processes, failures of hardware 

parts will remain unavoidable. This forces us to change our focus to consider also failures in the 

system. A failure is defined as “a transition from correct service to incorrect service, i.e., to not 

implementing the system function” or the “termination of the ability of an element to perform a 

function as required” [1]. The system function is thereby defined as “what the system is intended 

to do and is described by the functional specification in terms of functionality and performance” 

[33]. This suggests that a failure is defined by the fact that the guarantees from Section 3 are, for 

some reason, no longer fulfilled. In such case, failures may be defined as contract violations. 

Accordingly, the safety process entails an additional iteration loop in the system development 

process, considering failures and requiring additional safety features. These may manifest either 

in new safety requirements for the existing components, or in introducing some extra 

components because of safety issues (e.g., plausibility checks, redundant units). We suggest a 

modular top-down safety analysis applicable at the functional level, allowing early investigations 

and passing interfaces for component-based safety analysis down to the supplier, even before the 

technical solution has been defined. 
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The steps of this proceeding are in essence the ones prescribed by ISO 26262. They involve 

formulating safety goals, performing safety analysis and setting up a safety concept that defines 

mechanisms to enable the system to deal with failures at runtime. To benefit from the existing 

contracts for safety activities, we propose the following three-step approach: 

1. Derivation of safety goals using contracts (see Section 4.1) 

2. Contract-based modular safety analysis (see Section 4.2) 

3. Definition of safety mechanisms by reusing the safety contracts (see Section 4.3) 

4.1 Derivation of safety goals 

During Hazard Analysis and Risk Assessment (HARA), all hazards of the system are searched 

and ranked by an (Automotive) Safety Integrity Level (SIL or ASIL, ranging from 1 to 4 or A to 

D, depending on the applicable standard). From the hazards, top-level safety requirements (i.e., 

safety goals) are derived. They typically state that the hazard shall be prevented. A safety goal 

comes with an annotation of a “safe state” and a fault tolerance time (FTT), i.e., a specification 

for how long can the hazard be tolerated without an accident occurring. Within this timeframe 

the safety mechanisms will have to react [1]. A sample safety goal for an electric drive system is 

“Overspeed of more than 20% shall be prevented [ASIL C]; Safe State = Motor Shutoff, FTT = 

200 ms”.  

In many cases, safety requirements differ from those specifying the nominal customer or 

market requirements not in their style, but just in the values of their attributes. For instance, 

regarding customer satisfaction, the speed accuracy of some powertrain controller shall be in the 

range of +/- 5% (in order to avoid noise, vibration, or other discomfort), but only, if the accuracy 

gets worse than +/- 20% , the vehicle becomes unstable or uncontrollable, which constitutes a 

hazard. Hence, we might obtain two different guarantees for the same signal, e.g., the motor 

speed: first, without a safety attribute, to be within +/- 5% accuracy, and second, with a safety 

attribute (e.g., ASIL C) to be within +/- 20% accuracy. Leaving the range of +/- 5% is a failure 

regarding nominal behavior (a pure quality issue), but leaving the range of +/- 20% is a safety-

critical failure. This gradation will later turn out to be helpful during safety analysis (where 

distinguishing safe from dangerous failures is required).  

Most safety requirements follow a few patterns, for example: “It shall always be assured that 

<condition> is true”, “It shall never occur that <event> occurs”, or “Whenever <event A> 

occurs, the system shall react by <event B> within <time>”. Requirements expressible in terms 

of these patterns can be stated as guarantees. According to most relevant standards, the terms 

“always”, “never” and “whenever” have to be interpreted in a way that still there remains a non-

zero, but acceptably low probability that the safety goal is violated due to uncovered failures. 

Safety goals are usually weaker requirements than the requirements for the intended function. 

For example, instead of requiring that the motor speed shall always be within some accuracy 

limits, a safety goal might only require that over-speed above a certain limit shall be prevented. 

This means that something fundamental changes: we now have to allow weakening of 

guarantees. It might look as if adding safety makes the system worse, instead of better, but this 

paradox can be easily resolved: the system has been that bad before, but due to the assumption of 

idealistic components, throughout Section 3 we have simply ignored this. Taking the safety 

perspective, makes us accept that failures are unavoidable, which applies, in particular, to 

probabilistic failures of hardware parts through wear and tear (all parts will eventually fail). 

Inserting safety mechanisms into the system helps assuring the safety goal, even in presence of 

failures. To this end, safety analysis have to be carried out in order to learn what failures have 

the potential to violate any safety goal. A full refinement of safety requirements is only possible 

once there is a technical specification and requires assigning function blocks to technical 

components in hardware or software. After this step, auxiliary components appear in the 

architecture. For instance, a function block constituting a proportional-integral controller (PI-
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controller) specified as a Simulink block may be compiled into an executable C language 

software function, which is then deployed to a microcontroller. The assumption in the 

component contract of the function block may have been empty (“true”), which means that 

nothing particular is assumed for the function block to exhibit the specified input-output 

correlation. Now when the same block is implemented as a software component, it will only 

work correctly under the technical assumption of a correct execution environment. This includes 

aspects, such as regular scheduling by the OS, sufficient memory space, no corruption of 

memory space by other components, and a correctly working CPU. The latter, in turn, depends 

on environmental conditions, such as clock frequency, power supply voltage accuracy, and 

environmental temperature. All of these aspects must be assumed in component contracts, and 

guarantees shall be given regarding their technical fulfillment. Violations of these guarantees 

shall be subjected to safety analysis and shall be treated in the safety concept.  

4.2 Modular safety analysis 

Now, we can push the integration of safety analysis with development activities one step further 

by exploiting the existing contracts for the formal definition of functional failure modes. When 

there is a guarantee that the output voltage of a power supply, for instance, shall always be 

between 10 V and 14 V, then a value of 9.9 V is obviously “too low” and a value of 14.1 V is 

“too high”; these indicate the two types of value failures according to the typology in Figure 5. 

Similarly, if an event is guaranteed to occur within a defined time interval, it can occur “too 

early” or “too late”, indicating the two possible timing failures. If an event is guaranteed to occur 

under certain circumstances, but it does not, this is seen as an omission failure. If an event 

occurs, although under the given conditions there is an assertion that it shall not occur, this is 

called a commission failure.  

Matching these signal types and their corresponding types of contract patterns with the 

potential failure modes (cf. Figure 5) propagated at component ports assures type compatibility 

and restricts the set of potential failures to be considered. Eliminating irrelevant failure modes 

saves effort and increases consistency and understandability. Moreover, a formal definition of 

failure modes is given by the boundaries specified by the assertions for correct nominal behavior. 

Some safety standards require putting safe and dangerous failures into relation with each other 

and calculating a “Safe Failure Fraction” or similar metrics. The distinction is made by the 

different attributes for failure modes as proposed by [29] (see Section 2). Dangerous failures are 

those that constitute a violation of a guarantee derived from a Safety Goal as described in 

Section 4.1. They require countermeasures in terms of safety mechanisms, whereas safe failures 

usually do not require any safety mechanism in the safety concept.  

Of course, the presented failure type hierarchy is a generic one and might be adapted or 

extended; this in no way diminishes the applicability of contracts for failure definition, as the 

following examples illustrate. Let a contract assertion define the maximum harmonic distortion 

or the maximum noise in terms of a power density over frequency for a continuous signal. Then, 

new failure modes, such as “distorted” or “noisy” may be defined. Let an event be constrained 

by a contract to occur periodically with a maximum jitter; then, “uneven” may be an applicable 

failure mode. Let an event be constrained by a maximum number of occurrences during a time 

interval; then, “too often” may be appropriate. 

Passing from a component-based system architecture to a CFT failure analysis according to 

the procedures developed by [29] and [30] is explained schematically in Figure 5. By matching 

failure modes to signals according to the matching types, CFT Frames are generated for each 

component with all applicable failure modes (e.g., too high, too low for continuous signals), and 

automatically linked according to the signal links. They have to be filled manually with the 

internal failure model at a later time (right part of the Figure 5; the logical gates are for 

demonstration only and have no meaning).  
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Figure 5. Transition from Component Model to CFT Frame, and insertion of CFT Logic 

Failures do not occur in functional models, as these represent an idealistic mathematic model 

of the system behavior. They do occur in the technical implementation of the components as 

hardware or software. Therefore, a safety analysis is not complete (and cannot provide 

quantitative estimates for failure probabilities) unless performed on the technical architecture. 

On the lowest technical level, we recommend to abandon the signal-flow oriented way of 

thinking and to perform traditional techniques, such as FMEA on hardware design level or 

appropriate software analysis, where required (most safety analysis methods do not require 

probabilistic software failure modeling). The resulting failure consequences have to be linked to 

the failure ports of the lowest-level components, and only then the CFT can be evaluated 

qualitatively and quantitatively for each of the hazards as their top events. However, as a means 

of “frontloading” the safety process, component-based failure analysis, such as CFT or IF FMEA 

can be useful on functional architectures as well. They help examine the consequences of 

hypothetical failure modes and proposing countermeasures, before the technical design is 

complete. In our integrated process, we suggest using CFTs for the early failure analysis. The 

behavior of the fault propagation, which makes up the CFT structure, can be estimated early in 

the development process by fault injection simulation into an idealized behavioral model of the 

components or inserted manually. The internal failure modes inside the components must first be 

left as placeholders and be substituted later by the component supplier, using technical safety 

analysis ,methods, e.g., FMEA. 

4.3 Definition of safety mechanisms  

Once the failure modes have been identified, the last remaining step of the safety part of the 

process is defining appropriate technical countermeasures, called safety mechanisms, in order to 

ensure at least an acceptable level of safety in presence of failures. This is performed during the 

creation of the safety concept. The simplest solution is excluding certain failure modes by 

assumption: “Failure mode x does not occur”. These assumptions have to hold with respect to 

the technical solutions. Because of the chosen implementation, it may happen that some of the 

theoretically existing failure modes do not occur. As “never” translates to “with sufficiently low 

probability” (e.g., 10
-8 

per hour) in safety engineering, it may also be possible to choose a 

component with an extremely low failure rate (measured in the unit FIT – “failure in time”, 

which corresponds to one failure in 10
-9 

hours), such that the safety goal can be reached without 

any additional mechanisms. In most cases, mechanisms have to be inserted to diagnose the fault 

and to react on it appropriately, e.g., by switching to a redundant channel or by cutting the power 

supply to shut down the system safely. At the end, it has to be shown in the safety case that all 

failures that can occur have been sufficiently (i.e., with sufficient ASIL and sufficient Diagnostic 

Coverage) covered by safety mechanisms and are capable of entering and maintaining a safe 

state. As stated in Section 4.1, we are by now ready to accept that the overall system changes to a 

different operation mode as the normally desired one, in order to assure the avoidance of 

hazards. In the case of fail-operational systems (e.g., steer-by-wire) this alternative mode will 

even fulfill the same functional requirements than the nominal mode (with reduced level of 

redundancy though), at the cost of expensive hardware redundancy. In many cases, however, the 

alternative mode in case of failure (which is a rare case) will provide only a reduced performance 
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(e.g., worse accuracy leading to a reduction in comfort, a reduced set of available functions, 

etc.), or in extreme cases consist in a complete shut-off (“safe state”) of the system (which must 

be a fail-safe system in that case). The latter, obviously, represents a massive violation of the 

specification of the nominal function. Hence, we can conclude that a top-level requirement for 

the nominal behavior, stated, e.g., in the form:  

 

“The system shall always assure that the actual motor speed equals the target speed with a 

tolerance of +/- 5% at max.” 

becomes weaker during the safety process: 

 

“The system shall always assure that either the actual motor speed equals the target speed 

with a tolerance of +/- 5% at max, or the motor supply is shut-off within 100 ms.” 

 

Note that the OR conjunction is not the usual symmetric one, but rather a kind of “or else”: the 

first option is clearly the preferred one, the second option is only accepted as a last resort in case 

of failure, so an alternative representation could be: 

 

“1. The system shall always assure that the actual motor speed equals the target speed 

with a tolerance of +/- 5% at max. 

2. If due to some failure the above requirement can no longer be complied with, the system 

shall shut off the motor supply within 100 ms” 

 

Violating the first partial requirement is a non-conformance with the nominal function 

specification and might be a reason for customer complaint. The quality management might want 

to set a probabilistic target for this violation to occur. Nevertheless, in this case the second partial 

requirement still holds, so safety is still assured. Violation of the second partial requirement 

would constitute a hazard, which is worse than just a quality issue.  

However, diagnostic measures are also technical systems that are not perfect, and in rare cases 

there might be more than one failure present at one time. Hence, with some bad luck even the 

combination of both parts may still be violated, but this occurs with a very low probability. This 

is accepted according to the safety standards, because perfect safety is considered as 

unreachable. Most safety standards, such as ISO 26262 or IEC 61508, provide probabilistic 

target values for safety goal violations. These depend on the SIL or ASIL and can be as low as 

10
-8

 safety goal violations due to hardware failures per hour.  

Defining proper safety architectures and finding appropriate safety mechanisms is a creative 

process that cannot be automated. It is based on experience and can be supported by heuristics 

(e.g., placing diagnostics components close to the sensors and shutoff circuits close to the 

actuators is a useful rule of thumb), by architectural patterns (some standard patterns, such as 2-

out-of-3 are addressed in [1] and [2]), or one can refer to proven-in-use standard architectures 

(such as the VDA E-Gas-Concept in the automotive industry). As explained in [34], the designer 

has several possibilities: It can be claimed with an assumption that the failure does never occur 

(i.e., with sufficiently low probability, systematic failures prevented up to the given ASIL), or 

the component causing the failure can be equipped with an internal mechanism, such that the 

failure does no longer propagate to its output ports, or the propagation is accepted and the 

mechanism is placed into another component, downstream the signal flow. The latter is a 

frequent pattern in embedded systems design: as it is often not possible to make a simple sensor 

sufficiently safe, a diagnostics function is placed into the component that consumes the sensor 

value. As this component is typically realized as software component running on a 

microcontroller, it is cheaper to implement the mechanism in software than enhancing the sensor. 

The simplest diagnostics mechanisms are range checks that issue an alarm for out-of-range 

values. This is already sufficient to detect some very common failure modes like too high out of 
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range, and too low out of range, which may technically be caused by frequent problems, such as 

cable brake, supply voltage brake down or short circuits to ground. Of course, there is a wide 

choice of available diagnostics mechanisms, including model-based diagnostics, comparison to 

redundant sensors or majority voters. They add a new output port “invalid”, which signalizes to 

the consumers of the sensor value that the measurement value is no longer conforming to the 

specification (guarantees) for its nominal function. Failure detection alone does not assure the 

safe state. The “invalid” signal must be connected to existing blocks (e.g., operation mode state 

machine) or additional safety-specific blocks (e.g., failure manager), which are responsible for 

forcing the safe state (e.g., by cutting the power supply to the power electronics part of the 

actuator). An extract of a motor drive system with one of its sensors, the current sensor, is shown 

in Figure 6. On the left side, the system is shown before safety mechanisms have been inserted.  
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Figure 6. Current Sensor without (left) and with (right) safety mechanism 

One sample assertion about nominal behavior is depicted – it determines the guarantee of the 

current sensor and the assumption of the controller cascade by defining interface contracts. On 

the right side, the same system is shown after safety analysis, with an extra block “Sensor 

Diagnostics” inserted after the creation of the safety concept. Now, the combined subsystem of 

current sensor and sensor diagnostics guarantees with respect to its output ports: “[With ASIL C 

it is guaranteed that] Either the measurement value for the current corresponds to the actual 

physical current, transformed by some sensor function, with an accuracy of 10%, or the ‘valid’ 

output will be set to false within 10 ms after occurrence of the failure”. Note that the first part of 

the requirement was the original guarantee for the nominal function of the sensor. The ASIL is a 

qualifier for the guarantee and indicates the level of trust that can be placed into the 

implementation of the safety mechanism.  

Safety mechanisms themselves are complex systems and may be subject to failures as well. 

Therefore, the proposed safety process will often require several iterations, each time integrating 

the new safety mechanisms into the architecture and repeating the safety analysis considering the 

consequences of its failures. This repeats iteratively until some stop criterion is reached. For 

example, some standards allow to stop when all single and double point failures have been 

analyzed; sometimes an analysis of triple, quadruple, or higher order failures is required (cf. [1], 

Part 5, Note 1 of Clause 7.4.3.2).  

Since we augmented the existing assertions for the nominal behavior by the safe alternative 

behavior for the failure case, we obtain augmented contracts involving safety. We call them 

safety contracts. As the Safety Goal (see the sample in Section 4.1) as the top-level requirement 

can be stated as just another guarantee the system shall exhibit in its operational requirement, we 

can now jump back to the procedure, explained in Section 3 and refine the safety contracts into 

the components of the augmented architecture, thereby verifying that the safety concept is 

complete and adequate. 

As safety standards usually require taking failures in the environment into consideration, a 

top-down safety process must also analyze situations where the assumptions about the 

environment are broken. It must be evaluated whether the assumption that the failure mode does 
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not occur can still be maintained (e.g., the assumption that in a vehicle, the environmental 

temperature is always below 140 °C can be justified by experience and existing standards), or 

whether additional safety mechanisms even for the violation of assumptions about the 

environment must be integrated. If a designer of an off-the-shelf component requires an input 

signal from a sensor, and the sensor is labelled with a guarantee that, up to integrity of ASIL C, 

the current measurement is either inside the tolerance range, or labelled as invalid, this holds as 

an assumption for designing this component. Now, partitioning of work between several 

suppliers, designing and selling pre-qualified components is possible (called “Safety Elements 

out of Context” in ISO 26262 language). 

4.4 Validation of safety mechanisms 

As discussed in the previous section, safety mechanisms are also prone to failures and might 

therefore deliver incorrect results. Hence, an iterative analysis process has been suggested to 

ensure that the safety concept sufficiently covers the detection and mitigation needs required by 

the applicable safety standard. As a second analysis activity it needs to be ensured that the safety 

mechanisms are correctly realized by a functional model or an implementation as discussed in 

[35]. The contract specifying the safety mechanism defines the context, in which the safety 

mechanisms shall operate correctly, and how the result shall look like. The Plausibility Check in 

Figure 6 detects an invalid current signal and sets the valid signal to false. The assumption for 

this behavior is the absence of internal faults of the plausibility check. Hence, the contract will 

informally look like: 

 

Assumption: “Multiple-Point Failures do not occur” or, alternatively: “Safety mechanisms 

do not fail”. 

Guarantee: “The output signal is either correct or the invalid signal makes the output 

signal recognizable as faulty.” 

 

From the assumption in our example (which could be derived from some process standard) it 

follows that it should be considered that, at the same time, the signal is faulty due to some sensor 

failure and the Sensor Diagnostics Component from Figure 6 is defective. Of course, many 

standards in reality require considering at least dual-point failures and would not accept the 

claim that safety mechanisms never fail; some standards, however, allow neglecting failure sets 

of higher order than two, or failure combinations with sufficiently low probability.  

A technique to verify fault tolerance mechanisms is fault-injection. It is defined by [36] as “the 

deliberate introduction of faults into a system.” In order to execute a fault injection, failure 

hypotheses are needed, which are given by our formalization of failure modes. The different 

relevant failure modes are introduced at the input ports of some component in order to verify that 

the safety mechanism reacts appropriately. 

5 Application example: electric vehicle drive 

In SPES_XT project [6] an adaptive cruise control (ACC) system proposed by Daimler [37] was 

used to evaluate our approach. The ACC model includes an electric traction drive (E-Drive) 

consisting of a 3-phased electric machine and the corresponding ECU. A consistent development 

and safety assurance process was examined. Both, vehicle-level hazards and technical failure 

modes within the ECU were examined. A safety concept including ACC and E-Drive [34] was 

created. The ACC and the electric drive control were both modeled in MATLAB/Simulink, from 

which code was automatically generated. The safety mechanisms were also developed using 

Simulink or plain C code, and the whole software was loaded onto an evaluation board, mounted 
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on top of a 1:8 scaled model car. Most parts of the overall safety approach, as described in this 

article, have been tried out on this platform in a series of master theses. 

Since the 3-phased motor with field-oriented control has a complex controller structure and 

failure propagation mechanisms, a stationary DC motor drive system (which we have also 

physically implemented in lab scale) was used at its place to evaluate the contract-based 

approach. The purpose is the same, but the equations of a DC motor (at least approximately) are 

quite simple: torque = current * motor_constant; emf (i.e., the voltage induced due to the 

rotation) = rotational_speed * motor_constant; and voltage = emf + current * motor_resistance. 

The sample DC drive system consists of a small DC motor, a power electronics board, a 

microcontroller with some peripheries on a low-cost evaluation board, an operator panel with 

ON and OFF push button, and a rotary knob with a potentiometer to adjust the target speed. On 

the power board, a MOSFET transistor (Metal-Oxide Semiconductor Field-Effect Transistor) 

switches the battery voltage to the motor armature circuit according to the pulse width modulated 

(PWM) signal generated by the microcontroller at one of its timer outputs. The purpose of a 

cascade control is to adjust the rotational speed of the motor to the target speed commanded by 

the rotary knob with a specified accuracy. The finding a suitable control algorithm and a state 

machine for the primitive operation modes (ON and OFF) is explained in the remainder of the 

paper.  

The first step (see Section 3.4) is to write down the requirements in template language and to 

create a preliminary system architecture as presented in Figure 7. This architecture already 

indicates what sensors are required. The design includes motor current sensor, speed sensor, 

supply voltage sensor, and their connection to analog-to-digital converters (ADCs), timer 

outputs, and general purpose outputs of the microcontroller. 
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Figure 7. Technical overview of a simple DC Drive system 

 

We then proceed by deriving a set of assumptions and guarantees from the requirements in 

natural language, where we aim at using a restricted set of templates as a preparation for the later 

contract formalization. In addition, we formalized a few assumptions on the operational 

environment. An excerpt of this work is shown in Table 1. 
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Table 1. A selection of requirements and assumptions for the DC Drive system 

 
ID Guarantee/Assumption 

G01 When the system is in RUN state, the system shall generate torque at the motor shaft to achieve and maintain the 

rotational speed as specified. 

G02 When the system is in STOP state, the system shall not generate any torque at the motor shaft. 

G03 When system is in STOP state and the RUN button is pressed, the system shall react by changing to RUN state. 

G04 When system is in RUN state and the STOP button is pressed, the system shall react by changing to STOP state. 

G05 When the system is in RUN state and the STOP button is pressed, the motor current shall, after 100 ms at maximum, enter 

the range [0 mA; 1 mA] and stay within this range until the RUN button is pressed. 

G06 When the system has been in RUN state for at least 1s and the external input speed knob position has not changed for at 

least 1s and the load torque is zero and the voltage supply is at its nominal level, the actual speed of the motor shall remain 

in the range [target speed – speed accuracy; target speed + speed accuracy] (where speed accuracy is 10 rpm).  

A01 The supply voltage is always in the range [10V; 14V]. 

A02 The rotary knob position is always in the range [0 rpm; 1000 rpm]. 

 

The next step includes refining the functional system architecture and assigning meanings to 

all components and signals as illustrated in  

Figure 8. The safety-related blocks in the figure are depicted in red (shaded) and were not part of 

the initial version, before safety analysis had been performed. 
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Figure 8. Functional system architecture  

The description of each component and signal is described in natural language and can be 

represented in tabular notation. Furthermore, all signals are classified by types (continuous, 

discrete, event), which helps assigning compatible assertions and afterwards interface contracts 

to them. Examples are given in Table 2 and Table 3. 
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Table 2. Component names 

Component Name Description 

Current Controller Calculates setpoint for motor voltage from current target and actual current applying PI control law 

Current Sensor Measures motor current and transforms it into an analog signal according to the formula i_mot_meas 

= a * i_mot + b 

State Machine Determines the current operation state of the drive system according to the related requirements, 

listening to signals representing RUN pressed and STOP pressed events, producing a discrete 

output signal ENABLE that is true whenever state is RUN and false else 

 

Table 3. Signal names 

Signal Name Description Type 

I_mot_meas Measurement value from current sensor, represents the motor current, transformed according to the 

formula i_mot_meas = a * i_mot + b 

continuous 

I_mot The physical current through the DC motor, measured at the mounting point of the current sensor continuous 

Stop_Btn Event that occurs whenever the STOP button on the operator terminal is pressed event 

Ctrl_EN Enable signal to switch on/off the output of the controller chain discrete 

The description of each function block and its ports is the starting point for deriving the 

specification. Now the specification of the entire system has to be decomposed into the blocks, 

as described in Section 3.4. For instance, the imprecision, which is an additive disturbance that 

applies to continuous signals, has to be estimated and stated by assertions at each point of the 

signal flow, such that at the output of the system, the desired imprecision is met (see Figure 3). 

Similarly, the delay between events and their executions (STOP button pressed, for instance) 

over the processing chain (capturing the event, processing it in a state machine, forcing the 

controller chain to set current to zero, reaction of the power part and motor inductance) are also 

stated by assertions (see Figure 4). Note that making assumptions about imprecision or delay 

always means anticipating the technical solution, because pure mathematical function blocks do 

not cause imprecision and a mathematical state machine reacts without any delay on events. For 

blocks that are intended to be implemented by hardware (such as a current sensor or an 

operational amplifier), the expectable performance can be found in the corresponding data sheets 

or derived from the circuit diagram. For blocks that are intended to be implemented by software, 

the determining factors for delay and accuracy are the scheduling frequency, the worst case 

execution time of an algorithm, and the data types and calculation precision. Assertions can state, 

for instance, that the enabling signal for the controller chain goes to false within 20 ms after the 

STOP button has been pressed, or that the output signal I_mot_meas at the Current Sensor 

output deviates by not more than 10% from the mathematically correct value relating to the real 

physical current.  

Next, the assertions annotated to the signals are transformed into guarantees at the output ports 

of the components that produce these signals (e.g., the Current Sensor shall guarantee that the 

continuous signal I_cur_meas at its output stays in the specified accuracy range). These 

guarantees may then be used as assumptions by the consuming components. This establishes the 

interface contracts between respective neighbor components, which are subsequently turned into 

component contracts. Consequently, a specification for each of the components is provided, 

which can be further refined, or passed to a supplier, or concretized by a technical 

implementation.  

Now let us pass to the safety-related process steps, as described in Section 4. We consider two 

typical hazards, which might be taken from the HARA of the electric vehicle drive (the assigned 

ASILs are only for the example) (See Table 4). 
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Table 4. Some Sample Hazards of the E-Drive System 

 

ID Hazard Safety Goal ASIL Safe State FTT 

H01 Overspeed Speed Deviation of more than 100 rpm above target speed 

shall be prevented 

C Motor Off 200 ms 

H02 Unintended 

Start 

Applying motor current without having the RUN button pressed 

shall be prevented 

C Motor Off 100 ms 

 

 As indicated in Section 4.1, the decomposition of the safety goals is performed similarly to 

the functional requirements above, but as a next step we have to identify potential failures that 

could impair the safety goals (i.e., cause the hazards). The definition of a safe state indicates how 

to react on the related failures, and the Fault Tolerance Time specifies the guarantee on the delay 

of this reaction. According the procedure described in Section 4.2, we transform the system 

architecture into a CFT structure. This is shown in Figure 9. 
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Figure 9. Component Fault Tree for DC Drive system (controller part) 

The left part depicts the subcomponent of the black box “Controller Cascade” in the right part. 

The correspondence of components and ports is visible in the architecture and in the CFT, with 

the failure ports (triangle) shown inside the signal ports (rectangles). The structure has been 

generated automatically and the candidate failure modes have also been proposed automatically 

(“too high” and “too low” in the example, as we are dealing with continuous signals). The inner 

Fault Tree structure has been created manually, as it requires knowledge about the failure 

propagation (e.g., “too low” for the actual current at the input of the current controller 

I_mot_meas is related into “too high” for the motor voltage target value at the output) and the 

inner failure modes of each component. 

After inserting the safety mechanism, a new iteration of the safety analysis is performed. Now 

we find that no more single point faults can cause the “Overspeed” hazard H01. Only if two 

failures coincide (i.e., the sensor is defective and the safety mechanism fails to detect this), the 

safety goal would be violated. If the safety standard permits the assumption that not more than 

one failure occurs at a time, the system can be considered sufficiently safe. In practical cases, a 

probabilistic estimation of failure rate and diagnostic coverage would have to be evaluated using 
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quantitative fault tree analysis, putting the failure rates of the actual hardware parts into the fault 

tree equations. 

At this point, a new failure consequence can now occur: The current measurement value can 

have the new failure mode “unavailable”, in case that the raw value from the sensor is corrupt 

and this is detected by the safety mechanism. Typically, such a failure leads to an undesired 

unavailability of the drive system. This violates the specification for the nominal function, but 

not the safety goal, and is therefore acceptable from safety point of view. The general product 

management, however, has to check, under which circumstances and with which probability the 

unavailability of the drive system can be tolerated without violating market demands. 

Sometimes, market demands may even lead to more strict requirements than safety demands. 

6 Conclusions and outlook  

We have proposed a contract-based development approach for the development of safety-critical 

embedded systems in various industry domains. It facilitates the system specification, structural 

composition, and technical architecture design. In contrast to previous articles on the topic, we 

have shown how the development of the nominal behavior and the safety architecture can be 

integrated by referring to contract violations as a formal definition for failure modes. We also 

presented how to interpret the safety concept as an extension of the contract-based specification 

with safety mechanisms, leading to guarantees regarding the non-occurrence of hazards or the 

appropriate reaction to failure situations. Unlike the traditional V-model approach, our approach 

can be applied top-down or bottom-up, which fits to the current situation where systems also 

reuse components. The approach was illustrated step-by-step using an automotive electrical drive 

example. We have applied all parts of our approach to example systems in the context of the 

SPES XT research project and partially implemented the controllers and safety mechanisms in a 

small-scale model car. The approach appeared easy to learn and some parts have already been 

integrated in consulting projects with German carmakers. 

Our next steps include lifting the described approach to the development of Cyber Physical 

Systems (CPS). This next generation of embedded systems is expected to mark the transition to 

interconnected and self-organizing embedded systems that together provide even more complex 

functionality. Besides openness and dynamic reconfiguration at runtime CPS are often 

characterized by properties, such as tight integration of physical and virtual world, context-aware 

or highly automated planning of their behavior, and close interaction of humans and machines 

with changing or cooperative control (see [5]). 

In the context of CPS, even new design challenges will arise, e.g., the lack of a responsible 

manufacturer of the entire system-of-systems who could be held responsible for the behavior of 

the whole, and correspondingly also the lack of a requirements engineer, an architect or a safety 

manager. On a technical level, unstable communication, security issues, and lack of a common 

system state, time base, and agreed upon world model lead to a drastic increase of complexity. 

An example for a CPS we are currently working on is a cooperative adaptive cruise control 

(CACC). A CACC is an extension of today’s adaptive cruise controls, which enables vehicles to 

connect with each other to form a temporal convoy, to negotiate and agree on synchronized 

setpoint values for speed and distance (including warning against hazards or brake maneuvers), 

which are then locally controlled. As the V-model process of the current edition of ISO 26262 

requires an item definition in the beginning, it does not scale up to systems-of-systems with 

dynamically changing members, because the item on the highest level (the convoy) emerges at a 

runtime and has no fixed system boundary. In this case, contracts might be composed of global 

assumptions (e.g., regarding traffic rules and road layout) and safety goals demanded by legal 

authorities could be translated into verifiable guarantees (e.g., minimum distance between 

vehicles, no side crashes when changing lanes etc.). The negotiation of assumptions and 

guarantees would shift from development time to runtime and would, thus, have to be automated. 
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Solutions for contract negotiations at the instant of joining a convoy and runtime checking of 

contracts fulfillment before allowing certain operation modes (e.g., very close following) need to 

be developed, considering security aspects as well. Furthermore, the operational context is also 

dynamically variable for vehicles in traffic scenarios (e.g., number and quality of lanes on the 

highway). Hence, parameterized scenario set definitions are needed to replace today’s situation 

catalogues used for hazard analysis. Contract-based development seems a promising approach to 

deal with these new challenges. Our presented formulation of contracts make them suitable for 

an automated negotiation between partial systems connecting at runtime, and, hence, useful to 

address the above issues. 
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