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Abstract. In automation plants, technical processes must be conducted in a way 

that products, substances, or services are produced reliably, with sufficient qual-

ity and with minimal strain on resources. A key driver in conducting these pro-

cesses is the automation plant’s control software, which controls the technical 

plant components and thereby affects the physical, chemical, and mechanical 

processes that take place in automation plants. To this end, the control software 

of an automation plant must adhere to strict process requirements arising from 

the technical processes, and from the physical plant design. Currently, the vali-

dation of the control software often starts late in the engineering process in 

many cases – once the automation plant is almost completely constructed. 

However, as widely acknowledged, the later the control software of the automa-

tion plant is validated, the higher the effort for correcting revealed defects is, 

which can lead to serious budget overruns and project delays. In this article we 

propose an approach that allows the early validation of automation control 

software against the technical plant processes and assumptions about the physi-

cal plant design by means of simulation. We demonstrate the application of our 

approach on the example of an actual plant project from the automation industry 

and present it’s technical implementation. 

Keywords: Automation technology, process plants, context modeling, simula-

tion, validation, executable requirements, assumptions. 

1 Introduction 

The development of automation plants (e.g., processing facilities in the chemical industry, pro-

duction facilities in factories, or baggage routing facilities at airports) is a complex planning and 

engineering task. Typically, such automation plants are highly customized and the entire con-

struction process from the first idea to commissioning takes years, involving many different dis-

ciplines like process engineering, physical plant design, mechanics, electronics, and software 

engineering [1]. 

In our experience, the development of control software for automation plants becomes more 

and more challenging. The overall goal of the automation control software is the control of the 

technical plant processes performed within the automation plant in order to process or produce 
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products, substances, or services of a sufficient quality with the lowest demand on resources, 

such as time, energy, and material input [2]. For this purpose, the automation control software 

acts as the application software of the automation plant and calculates functions, solves equa-

tions, and controls the various technical devices of the automation plant (e.g., valves, containers, 

or conveyor belts). Moreover, physical properties of the involved materials (e.g., maximum pipe 

pressures, material cooling cycles, or friction) constrain the technical processes considerably. In 

consequence, the desired behavior of the automation control software is strongly influenced by 

strict process requirements, which arise due to the production method, involved materials, and 

plant components. Validating whether the automation control software satisfies the process re-

quirements of the entire plant is usually conducted at a late stage in the plant development pro-

cess, when the technical processes and the physical plant design are already defined or even con-

structed. Nevertheless, it is widely acknowledged that the later the control software of the auto-

mation plant is validated, the higher the effort for correcting revealed defects will be. This can 

lead to serious budget overruns, project delays, or to automation plants that do not fulfil their 

operational purpose. 

In [3] we proposed an approach that fosters the early validation of automation control software 

against the technical plant process, based on specified requirements of the control software and 

assumptions about the physical plant design. Early in the context of this research means that val-

idation takes place as soon as information about the technical process and the involved plant 

components is available, i.e., when conceptualization of the plant is complete, but the plant has 

not been built yet. Our approach aims at the identification of defects in the requirements (in the 

sense of incorrect or incompletely specified requirements) for the automation control software. 

The key principle of the approach is to use simulation during early stages of plant development 

process to assess the impact of the specified requirements for the automation control software on 

the technical plant process. This article is an extension of previous work [3] and includes addi-

tional details regarding automation industry, the desalination plant example, and a tooling im-

plementation of our approach in Section 3.3.3. Furthermore, this article explains the nature and 

application of context models in Section 3.1 in greater detail and provides a meta-model, which 

integrates static-structural, functional, and behavioral context model perspectives. In addition, 

this article describes the co-simulation of plant processes in detail and compares our approach to 

established techniques from the literature.  

The approach is primarily aimed at validating requirements for control software of automation 

plants. Yet, we expect that our approach can be widely used to validate application software for 

technical systems with complex technical and physical constraints. This applies, in particular, to 

systems in which application software controls immutable technical processes and in which valid 

assumptions about the physical design of the system can be made early in the development pro-

cess. 

The remainder of the article is structured as follows: Section 2 introduces the running example 

of a seawater desalination plant, which is used in this article to demonstrate the core concepts of 

our approach. Section 3 describes our approach for the early validation of automation control 

software in the development of automation plants. Section 4 reports on the findings from the 

evaluation of our approach in an industrial environment. Section 5 gives an overview on the re-

lated work. Finally, Section 6 concludes the article. 

2 Running example 

We illustrate our approach by means of a seawater desalination plant. Desalination plants are 

used to remove salts from seawater for the purpose of producing drinking water. Desalination is 

achieved using reverse osmosis, i.e., a filtration method, which requires water to be pumped 

through membranes at high pressure. An overview of a common technical plant architecture of 

such a plant is given in Figure 1. In our simplified running example, seawater is collected 
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through a system of four beach wells, which are drilled into the seashore. From the beach wells, 

salty seawater is pumped through pipelines to a seawater tank, where it is collected and pretreat-

ed with various chemicals for stabilization and biochemical cleansing before desalination can 

take place.  

In the remainder of the aricle we will focus on the beach wells. A beach well has the following 

general tasks: 

 Collect seawater through subsurface intakes, drilled into the seashore  

 Filter seawater through natural sand layers 

 Pump water from the subsurface intake collection tank to the seawater collection tank 

 Adjust the flow of seawater pumped into the seawater tank according to some constraints 

 

Figure 1. Technical plant architecture of a typical seawater desalination plant and one beach well 

In the automation industry, technical plant architectures are designed and documented by pip-

ing and installation diagrams (P&ID). Figure 1 shows the P&ID for one of the four beach wells 

with its main components. Each beach well is equipped with a pump to advance collected water, 

a discharge valve, through which water is advanced to the seawater tank, and a bypass control 

valve, which can be used to adjust the flow rate into the seawater tank. These beach well compo-

nents are controlled by the beach well software. The beach well software must ensure that beach 

well actuators, such as the valves and the pump, are controlled in a coordinated fashion and must 

function together to optimize the desalination process and avoid damage to the plant (e.g., when 

the beach well pumps run dry). To this end, the beach well software observes and orchestrates 

the beach well components so that process requirements are satisfied in accordance with the 

physical process itself. Table 1 shows an excerpt of such process requirements for a beach well.  

Table 1. Process requirements for a beach well 

ID Process Requirement 

1 Every active beach well must deliver a water flow of 400 m³/h to 750 m³/h  

2 The pump may only run if filling level of the beach well tank is sufficient 

3 The pump load shall be minimized using the bypass control valve 

4 The discharge valve must be closed before pump starts 

5 The discharge valve must be open after pump has started 

6 The discharge valve must be closed after pump has stopped 

 

To fulfill these process requirements, there is a number of signals exchanged between the 

beach well components and the beach well software. The signals are shown in Table 2. Signals 
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from the beach well and its components (Comp  BWS in Table 2) deliver information about 

the state of the beach well. They are used by the beach well software to control and coordinate 

the beach well (BWS  Comp in Table 2), depending on requests from the user (GUI  BWS 

in Table 2).  

Table 2. Signals exchanged in order to control the beach wells  

Component Signal Direction Description 

Beach Well 

BWState Comp  BWS Current state of BW operation 

BWLevel Comp  BWS Water level inside the BW reservoir 

BPPressure Comp  BWS Water pressure in bypass pipes 

DCPressure Comp  BWS Water pressure in discharge pipes 

Pump 

PumpOnOff BWS  Comp Turns pump on or off 

PumpState Comp  BWS Current state of pump operation 

PumpSetPoint BWS  Comp Adjusts pump revolutions per minute 

PumpRev Comp  BWS Current revolutions per minute 

Bypass Valve 

BPVCommand BWS  Comp Requests to open or close the BPV 

BPVOpen Comp  BWS True, if bypass valve is fully open 

BPVClosed Comp  BWS True, if bypass valve is fully closed 

Discharge Valve 

DVCommand BWS  Comp Requests to open or close the DV 

DVOpen Comp  BWS True, if discharge valve is fully open 

DVClosed Comp  BWS True, if discharge valve is fully closed 

User Interface 

BWControl GUI  BWS User request to turn BW on or off 

Demand GUI  BWS User requested desired water  

Operation Infor-
mation 

BWS  GUI Information about BW’s current state 

3 Solution approach  

We seek to foster the early validation of automation control software by means of simulation 

during early stages of the plant development process, i.e., when the technical plant is not yet fin-

ished, but when assumptions about the technical plant architecture can be made. Figure 2 gives 

an overview of the proposed approach. 

 

Figure 2. Overview over the approach 

The key idea of our approach is to explicitly document the assumptions about the technical 

plant architecture by means of context models (see Section 3.1). Based on these context models, 

validation use cases can be developed (see Section 3.2) and an executable requirements specifi-
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cation (see Section 3.3) can be systematically derived. Once a simulation tool has been config-

ured based on the technical processes that are conducted in the plant (see Section 3.3.1), the be-

havior of the automation software can be executed (see Section 3.3.2) and checked against the 

validation use cases. The output of the simulation (see Section 3.3.3) is a set of revealed incor-

rect and incomplete behavioral requirements of the automation control software. 

3.1 Assumptions about the prospective technical plant  

The aim of our approach is to support developers in validating the proper functioning of the au-

tomation software with respect to the plant control requirements, which arise from the technical 

processes. In particular, our aim is to conduct validation early in the development process, i.e., 

when assumptions about the intended behavior of the prospective technical plant architecture can 

be made. In requirements engineering, such system properties are often documented in three dis-

tinct perspectives focusing on static-structural, functional, or behavioral properties of the system 

[4]. We adopt these perspectives to document assumptions about the technical plant architecture. 

Specifically, we employ a number of diagrammatic representations, which we call operational 

context models. The term operational context is motivated by the notion that the assumptions 

about the technical plant document properties of the assumed context of the automation control 

software (i.e., the physical plant components). The context models are the instrument to docu-

ment and refine our understanding about the technical plant architecture, even if it is not com-

pletely defined or constructed. Figure 3 shows an excerpt of the overall ontological relationships 

between the different context model perspectives. In the following, we discuss the individual 

perspectives. 

 

Figure 3. Ontology of the operational context model 

Structural operational context. The structural operational context model documents structural 

characteristics of the beach well, its physical components, and the information exchanged be-

tween them and the beach well software [5]. This includes interfaces and interactions between 

human users and automation software of other plant components.  

As shown in Figure 4, a beach well consists of a pump, a bypass valve, and a discharge valve. 

The signals introduced in Table 2 are represented through interfaces between the beach compo-

nents and the beach well software. Since the structure and exchanged signals are the same for all 

four beach wells (see Section 2), the diagram only shows one beach well. In addition to the struc-

ture and signals, context influences are shown. For example, the diagram depicts that the beach 

wells pump water into a seawater tank and that the user receives information about the plant 

from the beach well software. 
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Figure 4. Structural operational context model of the beach well software 

Functional operational context. The functional operational context model documents the ex-

ternally visible functions of the automation control software and the physical plant components. 

In this model the focus is on the functional interplay between the automation control software 

and the physical plant components. This allows adopting a service-oriented view on the func-

tionality by depicting only those functions that influence one another and is done by assigning 

concrete values to the signals from the structural operational context model that drive this influ-

ence. Figure 5 depicts the functional operational context model of the beach well software func-

tions and the beach well component functions.  

 

Figure 5. Functional operational context model of the beach well software 

It is to note that in contrast to traditional activity diagrams, where the focus lies on control 

flow and/or data, in the functional operational context, the functional dependencies are of interest 

[6]. Therefore, albeit the notational elements of activity diagrams can be used to depict the func-

tional operational context, entry and final pseudo states may be omitted. Furthermore, the guards 

on the activity edges in Figure 5 do not represent decisions in the control flow centric sense, but 
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conditions that the signals from the structural operational context must satisfy in order to meet 

the process requirements when controlling the plant. 

As can be seen in Figure 5, the beach well software offers three externally visible functions, 

through which the beach well component functions are controlled: “start beach well”, “stop 

beach well”, and “balance load” (marked as <<context subject>> functions). The signals from 

the structural operational context model of the beach well software (see Figure 4 and Table 2) 

have been assigned with concrete values: The function “start beach well” shall only close the 

bypass valve and open the discharge valve if the pump has built up sufficient water pressure, 

such that water can flow into the seawater tank. Similarly, the function “stop beach well” turns 

the pump off, opens the bypass valve, and closes the discharge valve when water pressure is less 

than 20% of the maximum pressure. 

Behavioral operational context. The behavioral operational context model documents the ex-

ternally observable states of the physical plant components. In this sense, internal states of the 

plant components are abstracted and only the states relevant to the automation control software 

are depicted. Transitions between these states are triggered by values of the signals from the 

functional operational context.  

 

Figure 6. Behavioral operational context model of the beach well software 

Figure 6 depicts the externally observable states of the beach well components from the struc-

tural operational context (i.e., the bypass valve, the discharge valve, and the pump) as concurrent 

substates of the entire beach well. The guards on the transitions are conditions specified in the 

functional operational context model with respect to the beach well function “start beach well”. 

Both bypass valve and discharge valve can be either open or closed, depending on the water 

pressure level (see Figure 5). The pump can be off, on, or in an intermediate state (startup or 

shutdown). The transition between “pump.startup” and “pump.on” does not have a guard. This 

indicates that, although there is an event that triggers the transition, the condition for this event is 

private to the pump and not externally visible. In other words, the beach well software can only 

observe the states, but has no influence on when this transition occurs.  

3.2 Validation use cases 

Based on the documented assumptions about the technical plant architecture by context models 

(see Section 3.1), validation use cases can be developed for every automation control software 

function defined in the functional operational context model. Validation use cases reference the 

externally visible states of the physical plant components from the behavioral operational context 

models, which serve as pre- and post-conditions. These are used as acceptance criteria under 

which the behavior of the automation control software is considered valid with regard to the pro-
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cess requirements. Typically, validation use cases comprise a number of scenarios, which are 

sequential steps of interaction between the automation control software and the physical plant 

components [7]. They contain one success scenario (i.e., the sequence of steps leading to the 

desired post-condition), a number of alternative scenarios (i.e., alternative interactions leading to 

the same post-condition), and a number of exception scenarios (i.e., undesirable interactions, 

which violate the post-condition). For our beach well example, we develop the validation use 

case “Start Beach Well”, as shown in Table 3. 

Table 3. Validation use case "Start Beach Well" 

Title Start Beach Well 

Description A beach well is manually started by the user of the desalination plant 

Rationale 
Starting a beach well must follow a specific protocol that needs to be maintained by the beach well soft-
ware 

Trigger BWControl == “The user initiates the start of the beach well”. 

Pre-condition bypass_valve.open == true && discharge_valve.closed == true 

Post-condition pump.on == true && discharge_valve.open == true && bypass_valve.closed == true 

Success Scenario 

Step Action Actor 

1 The User initiates the start of a beach well User 

2 The Beach Well Software checks whether the beach well is in standby Beach Well Software 

3 The Beach Well Software closes the discharge valve Beach Well Software 

4 The Discharge Valve sends feedback that the valve is closed Discharge Valve 

5 The Beach Well Software starts the Pump with minimal revolutions Beach Well Software 

6 The Pump sends feedback that the Pump is started Pump 

7 The Beach Well Software closes the Bypass valve Beach Well Software 

8 The Beach Well Software opens the Discharge Valve Beach Well Software 

9 The Discharge Valve sends feedback that the valve is opened Discharge Valve 

10 The Beach Well Software reports that the beach well is on Beach Well Software 

 

The purpose of this validation use case is to operationalize the requirements from Table 1, 

specifically requirements 2, 4, and 5. We document validation use cases by templates that con-

tain the essential information about this use case in accordance with [7]. For brevity, only the 

main scenario is shown and the alternative and exception scenarios have been truncated. As can 

be seen, requirements 4 and 5 from Table 1 are pre- and post-conditions regarding the startup 

procedure for the beach wells. The concrete conditions have been extracted from the behavioral 

operational context model (printed in italic in Table 3). The trigger of this validation use case 

relates to a signal from the user interface to the beach well software, depicted in the structural 

operational context model. Since the process requirements 2, 4, and 5 imply a certain sequence 

of valve actuation and minimal tank filling level, the beach well software must perform several 

sequential steps, documented in the success scenario. 

To execute the scenarios from the validation use cases during simulation of the beach well 

software, a more formal representation is required. To this end, every scenario of each validation 

use case is refined into a Message Sequence Chart (MSC)  [8]. MSCs describe the informal steps 

from the scenarios by means of formal messages between the automation control software and 

the physical plant components. Figure 7 shows the formalization of the success scenario from 

Table 3. 

In this formal representation, the interface information from the structural operational context 

model (see Figure 4) is transferred to a sequence of formal messages. These messages trigger 

transitions from one state to another. These states correspond to the externally observable states 

of the physical plant components from the behavioral operational context model (see Figure 6). 

This formalized scenario serves as a reference for the simulation of the beach well software (see 

Subection 3.3.3). 
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Figure 7. Success scenario from the validation use case “Start Beach Well” in Table 3 

3.3 Executable requirements specifications 

After the validation use cases are documented and their scenarios are formalized, a simulation 

tool can be configured (e.g., CoSMOS [9], Aspen, Simulink, or Modelica). The idea is that we 

try to reenact the validation use cases in a simulation of the automation control software and the 

technical plant architecture. For this purpose, the technical plant behavior and the automation 

software behavior must be modeled in an executable way (see Subections 3.3.1 and 3.3.2, re-

spectively). Furthermore, both must be coupled in a simulative process, which executes the vali-

dation use cases (see Section 3.3.3).  

3.3.1 Modeling the technical plant behavior 

We model the technical plant behavior by describing the physical plant components by math-

ematical models, typically, differential/algebraic sets of equations (DAE). In the automation in-

dustry, these processes can often be composed from component libraries containing mathemati-

cal behavior models for generic physical plant components. The relevant configuration parame-

ters (e.g., height of tank, length of pipes, etc.) of each component can be modified for different 

plant instances. Figure 8 shows how a technical plant architecture model with a beach well tank, 

a pump, a discharge valve, and a seawater tank is transformed into a simulation model. 

The upper section of Figure 8 depicts the relevant excerpt of the technical plant architecture 

for our validation use case. Alongside the pump and the discharge valve from the structural op-

erational context model (see Figure 4), which are controlled by the beach well software, the 

beach well intake tank and the seawater tank are depicted. All components can be found in the 

piping and installation diagram (P&ID, see Section 2). The middle section of Figure 8 shows the 

differential equations for flow, filling level, and pressure for both the beach well tank and the 

seawater tank. The behavior of the pump and the discharge valve is described by equations for 

flow and pressure. Since the four components are connected by three connections (which in a 

commissioned plant may correspond to water-bearing pipes), six additional equations are neces-

sary to describe the flow balance in the physical pipes and the pressure potential at the connec-

tion points. In total, this system contains 14 equations and 14 variables.  
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Figure 8. Generation of a technical plant behavior model from a technical architecture model 

Once the relevant physical plant components are identified by means of the structural opera-

tional context model and once the equations representing their behavior have been compiled, the 

simulation tool can be configured, as indicated by the rounded arrows on the left and ride side of 

Figure 8. In our example, we use the tool CoSMOS [9], which uses icons similar to the P&ID 

(see the lower section of Figure 8). Using this tool, the plant behavior can be simulated by solv-

ing the resulting DAE-system. 

3.3.2 Coupling with the executable automation software behavior  

As a counterpart of the technical plant behavior, we model the functionality of the automation 

software to validate the behavior that emerges from the interaction between the automation soft-

ware and the technical plant it controls. Therefore, we structure the functionality of the automa-

tion control software by means of functions [10]. A function summarizes a set of requirements 

concerning the user interaction and formalizes them by means of an executable behavior descrip-

tion. Figure 9 shows the two functions we defined for the beach well software. 

 

Figure 9. SysML block definition diagram showing two beach well software functions 
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For the specification of the behavior described by the validation use cases, we define two 

functions: “toggle beach well” and the “balance load”. Each of these two functions handles a 

subset of the input and output signals of the automation software that are specified in the struc-

tural operational context model (see Figure 4). In this case, both functions are independent from 

each other, but can be used in coordination. In an automation plant with a higher degree of auto-

mation, for example, if the function “balance load” may automatically start or stop additional 

beach wells by activating the function “toggle beach well”, it is necessary to add internal chan-

nels that model the communication between functions [11], [12]. 

Functions can be decomposed into further sub-functions or their behavior must be specified in 

terms of an executable behavior descriptions (e.g., state machines, a table specifications, or a 

code snippets). The reason for this is that we want to use the system specification in a simulation 

to execute the scenarios from the validation use cases. Figure 10 shows a state machine that de-

scribes the behavior of the “toggle beach well” function, which can be used to execute the suc-

cess scenario from Figure 7. 

 

Figure 10. Behavior of the “Toggle Beach Well” function described by a state machine 

3.3.3 Conducting the simulation 

Based on the formalized validation use cases (see Section 3.2), the equation system documenting 

the technical plant behavior (see Section 3.3.1), and the automation software behavior (see Sec-

tion 3.3.2), the simulation can be conducted. The simulation tool concurrently executes the be-

havior models of the automation software and the technical plant. The validation use cases and 

their associated scenarios are used as input for the simulation. If the simulation tool is able to 

execute the scenarios and the externally observable states from the behavioral operational con-

text models match the final states of the physical plant components by the end of the simulation, 

the requirements specification is valid with regard to that use case. If the simulation tool is una-

ble to execute the validation scenario and/or the post-conditions do not match the assumed exter-

nally observable states of the physical components, this is an indication that there is a defect. 

This defect may comprise incorrect or incomplete automation control software requirements, 

incorrect assumptions in the context models, or erroneously configured simulation parameters. 

We implemented the approach using the academic tool AutoFocus3
1
 to develop the context 

models, the validation use cases, and the executable automation software specification. We used 

the industrial tool CoSMOS to create an executable model of the technical plant process. To per-

form the validation process, we coupled the tools in the following way (see Figure 11). CoSMOS 

offers an open client-server co-simulation architecture. In this architecture, the co-simulation 

server orchestrates the interactions between simulation clients. Therefore, we implemented client 

instances for the AutoFocus3 simulation of the automation software, and for the CoSMOS simu-

lation of the technical process. The goal of the simulation is to reenact specified validation sce-

                                                           
1 http://af3.fortiss.org/ 
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narios. For this purpose, the co-simulation server performs one time step at every predefined 

sampling point in the automation software simulation, which is a discrete model. This means that 

the automation software is evaluated only on predefined time steps. The output then serves as an 

input for the continuous model of the technical plant simulation, which then covers the time be-

tween two steps of the discrete sampling points.  

 

Figure 11. Implementation of the Co-Simulation Process 

On top of this coupled simulation process, there is the third component also implemented as a 

simulation client called validation use case monitor. We feed this validation use case monitor 

component with the validation use case scenarios from Section 3.2. Technically, the validation 

use cases are translated to an XML file by expressing each scenario step as a simple condi-

tion/action rule (see the left side of Figure 12). This event-driven model monitors the simulation 

process and injects messages according to specified condition/action rules.  The validation use 

case monitor is initialized with the first rule (i.e., scenario step) marked as “active”. When the 

condition of this active rule is fulfilled by the running simulation, the corresponding action in-

jects messages to the simulation and the following rule within the validation use case monitor is 

marked as “active”. After the last rule (i.e., the last scenario step) has been processed, the valida-

tion use case monitor reports that the validation use case scenario has been reenacted by the sim-

ulation. If a currently active rule is not processed for a certain duration (timeout), then the valida-

tion use case monitor reports that the validation use case scenario could not be reenacted and 

therefore, the validation has failed. Figure 12 shows a visualization of the technical plant behav-

ior over time that reflects the desired behavior as specified by the success scenario of validation 

use case “Start Beach Well”. 

 

Figure 12. A validation scenario encoded in XML is reenacted in a simulation run. 
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Usually, in automation plant development projects, the technical plant behavior and layout are 

developed before the automation software is defined and the focus of this article is on conducting 

a coupled simulation of both. However, in situations where the technical plant behavior has not 

been defined yet, it is possible to use formal verification techniques (e.g., model checking) to 

check whether the discrete automation software model alone is able to fulfil the validation use 

cases [13]. 

4 Experiences from application in industry 

As part of a broader research agenda, we applied the approach presented in Section 3 in detail to 

the desalination plant in a case study with partners from the automation industry. The case study 

has shown that the context model and its three perspectives provide useful information to capture 

the context information relevant to the software early in the engineering process. Context model-

ing leads to seamless and consistent models because information that was systematically derived 

and documented in context models can be referenced in the validation use cases. This leads to an 

improved tracing between development assumptions and requirements specification and makes 

validation criteria more objective. Relevant interfaces of the automation control software with 

the technical plant components are identified early. This is especially the case with respect to 

structural interfaces and functional dependencies between automation software and plant com-

ponents, as identified in structural and functional operational context models. Additionally, the 

behavioral operational context model provides pre- and post-conditions for validation use cases. 

The case study has furthermore shown that our approach allows the generation of executable 

models for the technical process and for the automation software. Before using our approach, the 

technical process and the executable models were described in inherently different structures, 

since the technical process describes a continuous system, whereas the automation control soft-

ware is discrete following a predefined sampling rate. As both models have predefined interfac-

es, it is possible to couple them in a simulation model. This co-simulation process of animating 

the executable model fosters traceability between process action and software reaction, allowing 

developers to better judge the validity of the software. For example, when we conducted the 

simulation, the “start beach well” validation scenario failed initially, because closing the bypass 

valve and afterwards opening the discharge valve lead to overpressure in the pipes. As a result, 

we changed the automation software to close the bypass valve and open the discharge valve sim-

ultaneously, which lead to a successful simulation run. 

Besides that, our approach allows the definition of basic constraints for the software design, 

such as control parameters, lag time, or limits. With respect to the running example, this might 

mean that a tank must not run dry and, therefore, it has to be ensured that a filling level of at least 

10% must be maintained. In the coupled simulation process of our case study, we were able to 

reenact the specified validation use cases successfully.  

Traditionally, placing particular emphasis on documenting context information that is shared 

among the different development disciplines involved in the automation industry is a novel con-

cept in the development of automation control software. Interfaces, such as the signal list from 

Table 2, are usually defined individually and agreed upon in cooperation between two disci-

plines. In recent years, there has been a trend towards lifecycle engineering tools, which docu-

ment plant data in an object-oriented and cross-disciplinary fashion. The approach we describe 

here can be applied preliminary to these lifecycle engineering tools. In this way, interfaces be-

tween different disciplines can already be set up and code segments can be generated from 

(semi-)formal models (e.g., UML or PCS7). 
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5 Related work 

The related work, regarding the approach presented in Section 3, concerns two main topics: as-

sumption and context modeling and requirements validation by means of simulation. These are 

discussed in the remainder of this section. 

In requirements engineering, explicitly documenting implicit knowledge about the problem 

domain is seen as a prerequisite for structured validation. To this end,, in [10] and [14], the doc-

umentation of state-based behavior of the operational context is proposed, which allows docu-

menting the operational context in the executable form. Similarly, in [16], representation tech-

niques to document entities in the context of a system are suggested. Other approaches (e.g., 

[17], [18], [19]) have been proposed, which use documented context information for quality as-

surance, e.g., by evaluating development artifacts against assumptions about the context that may 

hold during runtime (i.e., goals in [17] and the world in [18]), or analyze the impact of context 

changes (see [19]). In all approaches, documenting context information is used as a reference 

artifact, against which other development artifacts can be validated. Therefore, we have incorpo-

rated context modeling as a central part of our approach such that assumptions about the business 

process (information systems) or the physical production process (in the automation industry) 

can be captured so that validation can take place as early as possible.  

Most approaches regarding requirements validation by means of simulation are typically cen-

tered on animating requirements. In many of these approaches, scenarios are used to structure the 

interaction between users and the system under development (e.g., [20], [21]). However, in the 

case of information or automation control software, it must be validated that the behavior of the 

system satisfies process requirements, regardless if these requirements are imposed by technical 

processes or business processes. To this end, there are a number of approaches that deal with 

constraint satisfaction during dynamic execution of requirements. For example, in [22], formal 

requirements are executed and checked against a mock-up of the operational environment of the 

system. Similarly, in [16], [23], [24], and [25], behavioral models are used to derive an executa-

ble specification of the system under development. The key idea of these approaches is to de-

scribe the system in terms of a language with execution semantics, which is necessary for the 

simulation of automation control software in particular. To this end, Message Sequence Charts 

(MSCs) can bridge the gap between intuitive scenario-based visual notations and formal seman-

tics. In our approach, we have therefore chosen MSCs to derive executable requirements system-

atically, which we subject to simulation. 

6 Conclusion 

In this article we presented an approach that foster the validation of automation control software 

against the technical plant process and the automation plant design at an early stage of develop-

ment. Nowadays, the control software of automation plants is typically validated late in the engi-

neering process, which may lead to serious budget overruns and projects delays in case the de-

fects are revealed. Our approach enables the engineers to validate the application control soft-

ware early in the engineering process as it validates the requirements of the automation control 

software against the technical plant process and assumptions about the design of the automation 

plant. For that purpose, the requirements of the control software are executed against assump-

tions and the technical plant process within a simulation environment in order to reveal defects in 

the executable requirements. It must be emphasized that, in our approach, the subjects of valida-

tion are the executable requirements derived from the context model of the automation control 

software and not the automation control software itself. Consequently, if no defects are revealed 

in the simulative validation, it can only be concluded that the requirements of the control soft-

ware are valid with respect to the technical plant process and the assumptions about the plant 



 

64 

 

design. Under these circumstances, we can conclude that the corresponding automation control 

software will be valid if requirements have been implemented correctly.  

Albeit this approach was developed in the context of the automation industry, we believe that 

it is applicable to any type of software system that controls real-world processes, such as real-

time controlled feedback loops in case of embedded systems, or business processes in case of 

information systems. 
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