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Abstract. Although the semantics of converging OR gateways (also known
as OR-joins) in business processes is far from trivial, they are frequently
used. In this paper, we describe a general definition for soundness of pro-
cesses guaranteeing the absence of deadlocks and no lack of synchroniza-
tion for each possible OR-join semantics. Then, we derive a criterion —
completeness — to evaluate existing approaches of OR-join semantics. As a
result, no currently existing OR-join semantics is complete; therefore, there
are actually correct processes being not successfully executable. For that,
we provide our own approach based on a traditional relation of compiler
construction; and we show that this approach is complete and can be called
the most liberal possible.
Keywords: Business process, OR-join, completeness, semantics, sound-
ness.

1 Introduction

Graphical notations of programs and processes allowing explicit parallelism, e.g., Business Process
Model and Notation (BPMN) [1] or Event-driven Process Chains, are standard during the modeling
of (business) processes in software engineering and business process management. Such a mod-
eling of processes is a difficult and error-prone task. Especially, the fusion of different paths is
sometimes complex, so that often it is the best choice to use an inclusive converging (OR) gateway
— for reasons of correctness and readability, e.g., because of compactness. However, the seman-
tics of the converging OR gateways, called OR-joins, is one of the major problems in defining an
automatic and correct execution of arbitrary processes [2].

The major task of OR-joins in practice is the synchronization of an arbitrary non-empty set of
control flows. Figure 1 illustrates two processes in BPMN notation containing OR-joins. The left-
hand process (a) has an OR diverging gateway OS1 (an OR-split) making it possible to execute an
individual non-empty subset of its successor tasks T1, T2, and T3. The OR-join OJ1 then combines
these flows into a single one. In this case, this OR-join only has to wait for the arrival of all
incoming control flows, i.e., an OR-join has a non-local semantics since its execution does not
only depend on the control of its incoming edges. Moreover, an OR-join has to wait for all control
flows which may still arrive at its incoming edges. This informal description of ’may still arrive’
implies possible future states. However, they can only be determined if the semantics of OR-joins
exists. Therefore, a semantics of OR-joins has to be defined carefully without using future states,
i.e., the state space.

A second problem is that two or more OR-joins may mutually depend on each other as one
OR-join can be executed only if the other is not and vice versa. These situations are called vicious
circles [3] and have high relevance in practice [2].
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Figure 1. Two processes in BPMN notation containing OR-joins

The right-hand side (b) of Figure 1 addresses the introduced difficulties (following [2]). It con-
tains a diverging AND gateway (a fork) F1 supplying both OR-joins OJ1 and OJ2. The simple
semantics of the previous example does not hold since the OR-join OJ1 would wait for the execu-
tion of OJ2 and vice versa — a vicious circle. Such vicious circles are well-researched and there
are a lot of well-established and carefully defined semantics of OR-joins, e.g., [2], [3], [4], [5], [6],
[7], [8], [9], [10], with a considerable practical relevance.

However, Figure 2 illustrates a sample process which leads to failures by using state-of-the-art
semantics. It describes a car service in a garage. At first, the garage receives a car for an inspection
and creates an order. Afterwards, an accounting system creates the corresponding invoice and, at
the same time, the inspection starts. During the inspection, the customer may have special requests,
e.g., changing the oil or testing the air pressure of the tires. Those special requests would be per-
formed at the same time like the inspection. If all requests are done, the garage cleans up the car
as a special service, followed by an inspection of the customer. If the customer is unsatisfied about
the cleanness of his or her car, the garage keeps cleaning the car until the customer is pleased.

If we throw away all textual information and eliminate the special request part from the sample
process, we get the same abstract process as illustrated on the right-hand side of Figure 1 (b).
We will use that abstract process as counter example in Section 4 where we show that it leads to
failures (and therefore cannot be properly executed) by the use of state-of-the-art semantics.

For this reason, in this paper, we provide a general definition of soundness for business pro-
cesses which promises the absence of failures [11], [12], [13]. Our common definition of soundness
makes it possible to define completeness, building a criterion to evaluate the quality of existing
OR-join semantics with regard to the number of sound processes being successfully executable.
Therefore, we will show that all existing OR-join semantics (to the best of the authors’ knowledge),
especially the popular approach of Völzer [2], are good approximations of a complete OR-join se-
mantics — however none is complete, i.e., they lead to failures in sound processes as mentioned
before.
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Figure 2. Car service process
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The definition of a (first) complete OR-join semantics as described in this paper has several
advantages: 1) The definition of an intuitive and correct semantics for process modelers is simpler
if the limits of OR-join semantics are known. 2) A successful replacement of OR-joins with con-
verging XOR gateways (merges) or converging AND gateways (AND-joins) needs completeness
to be correct. 3) Although someone may argue for the poor modeling of processes with OR-joins
in cases where state-of-the-art semantics do not work, it is always possible that accurately modeled
business processes are not correctly executable when using OR-joins in process collaborations, in
big processes, or for reasons of readability and compactness of resulting processes.

The rest of the paper is structured as follows: Section 2 summarizes some definitions and
notions, followed by the definition of soundness and completeness with OR-joins in Section 3.
Afterwards, we evaluate existing OR-join semantics with regard to completeness (Section 4) and
introduce a first complete semantics in Section 5. The complete semantics will then be applied on
two examples in Section 6. Finally, Section 7 concludes this paper.

2 Preliminaries

In this section, we introduce some basics of processes. Processes are mostly represented as work-
flow nets (Petri nets) [12] or workflow graphs being special cases of control flow graphs allowing
explicit parallelism [11]. We prefer workflow graphs since the modeling of OR gateways in Petri
nets is difficult [10]. Before we define workflow graphs, the term of paths is introduced. Formally,
a path P = (n1, . . . , nm−1, nm),m ≥ 2, for a digraph G = (N,E) is a sequence of nodes of N
such that ∀i ∈ {1, . . . ,m− 1} : (ni, ni+1) ∈ E. We write n ∈ P iff n ∈ {n1,. . . ,nm}. Sometimes,
we use a similar definition of paths consisting of edges and depending on the context, i.e., a path
P = (e1, . . . ,em−1, em),m ≥ 2, is a sequence of edges of E such that ∀i ∈ {1, . . . ,m− 1} : the
target node of ei is the source node of ei+1.

A workflow graph is a directed graph WFG = (N,E) where N is a set of nodes which is
partitioned into disjoint sets of activities NA, forks NF , AND-joins NJ , splits NS , merges NM ,
OR-splits NOS , OR-joins NOJ , and {start, end} such that (1) start is the unique start node and
end is the unique end node, (2) the end node, activity, split, OR-split, and fork each have exactly
one incoming edge, (3) merges, OR-joins, and AND-joins have at least two incoming edges, (4)
the start node, activity, merge, OR-join, and AND-join each have exactly one outgoing edge, (5)
splits, OR-splits, and forks have at least two outgoing edges, and (6) each node n ∈ N lies on a
path from the start node to the end node.

Figure 3 shows a sample workflow graph. The start and end nodes are depicted as (thick)
circles, whereas an activity is depicted as a rectangle. Forks and AND-joins are illustrated as thin
massive rectangles, and splits and merges as (thick) diamonds. OR-splits and OR-joins are depicted
as (thick) diamonds with dots in their center.

Usually, the semantics of workflow graphs is defined, similarly to Petri nets, as a token game.
Therefore, a state of a workflow graph WFG = (N,E) is represented by tokens on the edges
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of the graph, i.e., a state of WFG is a mapping S : E → N which assigns a natural number to
each edge. If S(e) = k, we say that edge e carries k tokens in state S. In the initial state, only the
outgoing edge of the start node carries a token, whereas in the termination state, only the incoming
edge of the end node carries a token. After a node n ∈ N will be executed (fired) in state S, the
state changes into a state S ′, depicted as S n→ S ′. A state S ′ is reachable from a state S (written
S →∗ S ′) if there is a finite sequence S

n1→ S1 . . . Sk−1
nk→ S ′, k ≥ 0.

Basically, a semantics of an arbitrary node n can be divided into two parts: The enabledness
of n in a state S, i.e., whether node n can be executed or not, and the effect on state S if n will
be executed. The effect is traditionally defined as a modification of the number of tokens on the
incoming and outgoing edges of the executed node. An activity, a fork, and an AND-join remove
one token from each of their incoming edges and add one token to each of their outgoing edges. A
merge removes non-deterministically one token from one of its incoming edges carrying a token
and adds one token to its outgoing edge. In workflow graphs that carry no data as, referred in
this paper, a split removes one token from its incoming edge and decides non-deterministically
on which of its outgoing edges it will add one token. An OR-split performs the same way as a
split; however it adds one token for each edge of a non-empty subset of its outgoing edges. At this
moment, it is assumed that an OR-join removes one token of all of its incoming edges carrying a
token and adds one token to its outgoing edge. Vanhatalo et al. [14] formalize the effect of a node
n and a state change S

n→ S ′ (also for OR-joins) in general as follows:

1. n is a fork, AND-join, or an activity:

S′(e) =



S(e)− 1, e is an incoming
edge of n

S(e) + 1, e is an outgoing
edge of n

S(e), otherwise

2. n is a split or merge and there are an
incoming e′ edge with S(e′) ≥ 1 and
an outgoing edge e′′ of n:

S′(e) =


S(e)− 1, e = e′

S(e) + 1, e = e′′

S(e), otherwise

3. n is an OR-split or OR-join and there is a non-empty set Out of outgoing edges of n:

S′(e) =


S(e)− 1, e is an incoming edge of n such that S(e) ≥ 1

S(e) + 1, e ∈ Out

S(e), otherwise

Thus, tokens (may) travel through the workflow graph depending on the nodes (possibly) firing.
Moreover, we say that a token on an edge e in state S arrives on an incoming edge of a node n (or
simply arrive at n) iff the token of e travels through state changes to that incoming edge of n.

The enabledness of a node can be seen as a mapping from a node n and a state S to enabled or
not enabled, called release function. In general, if S is the set of all possible states of WFG, the
mapping is defined as F : N ×S→ { enabled, not enabled }. To keep the release function simple,
we describe only the conditions when the release function evaluates to enabled in the remainder
of this paper, knowing that it evaluates to not enabled otherwise. Basically, a node is not enabled
in a state S if it has no incoming edge which carries a token. In the following, we call each node
n active in state S if this basic property (that one of n’s incoming edges carries a token) holds.
Most nodes (activities, splits, merges, forks, and OR-splits) are actually enabled if they are active.
However, an AND-join is not enabled until each of its incoming edges has a token. Since the
release function of OR-joins is the focus of this paper, we refer to it simply as release function in
the following and introduce some approaches in Section 4.
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3 Soundness, Completeness, and Liberty

Soundness, introduced by van der Aalst [15], is one of the most frequently used correctness crite-
rion of business processes and guarantees the absence of deadlocks and lack of synchronization if
data is not considered. A state S of WFG is a deadlock iff there is a token on an incoming edge of
a node n such that each reachable state from S carries also a token on that edge. We also say that
n causes a deadlock. S has a lack of synchronization iff there is an edge which carries more than
one token in S. Usually, a workflow graph is called sound iff no deadlock or state with a lack of
synchronization is reachable from the initial state.

Since the release function of OR-joins is currently undefined, we cannot compute reachable
states from an initial state. Therefore, we define soundness regarding OR-joins in its most general
manner:

Definition 1 (Soundness). Let WFG = (N,E) be a workflow graph.
WFG is sound iff there is a release function F of OR-joins such that from the initial state

neither a deadlock nor a state with a lack of synchronization is reachable. In this case, we say that
F holds for WFG.

This definition has the following advantages:

(1) The definition is equal to classical soundness iff the workflow graph has no OR-joins since
each arbitrary release function can be used.

(2) If the workflow graph is unsound without regarding the release function, it is unsound for each
arbitrary release function.

(3) If and only if there is a sound (non-deterministic) execution of the workflow graph, there is at
least one valid release function.

We have a look at the four workflow graphs of Figure 4 as examples for this general definition
of soundness. The workflow graph (a) is sound as there exists a simple release function F for the
OR-joins that does not result not in a deadlock nor in a lack of synchronization, e.g., waiting for
all tokens on those edges which have a path to it. The workflow graph (b) is naturally not sound
as there is no release function that can avoid the possible lack of synchronization in the merge
M1, above all as the workflow graph has no OR-joins. Workflow graph (c) is not sound either and
workflow graph (d) is sound. The reason why the last both workflow graphs are (not) sound is
explained in the following, especially, in Section 5.

With the help of this general definition of soundness, we can define a criterion — completeness
— to evaluate the quality of a release function.

Definition 2 (Completeness). Let WFG be the set of all sound workflow graphs and F the set of
all release functions holding for each WFG ∈WFG.

A release function F is complete iff F ∈ F. We say that a complete release function is a most
liberal one.

4 Evaluation

In the last section, we have defined the notion of completeness which allows the evaluation of
existing OR-join semantics approaches with regard to their liberalness. For this, we introduce
a sample workflow graph (cf. Figure 5) being used as a counterexample to show that existing
release functions are not as liberal as possible. If this workflow graph will be executed, it starts its
execution with a single token on the incoming edge of the fork F1. Since that fork is then enabled,
it fires and the activity A2 can be executed so that the OR-joins O1 and O2 have a token on exactly
one of their incoming edges e1 and e3 in a state S. Now, there are four possibilities in S:
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Figure 4. Sound and unsound workflow graphs

(1) No OR-join is enabled: S would be a deadlock.  
(2) OR-join O1 is enabled and O2 is not. As a consequence, O1 fires and O2 gets a token via

its upper incoming edge e4. Therefore, O2 synchronizes both tokens on its incoming edges
to a single one on its outgoing edge. As a result, no deadlock and no state with a lack of
synchronization is actually possible afterwards.X

(3) OR-join O2 is enabled and O1 is not. However, after O2 has been fired, the split S1 may decide
to put a token on the incoming edge e8 of the end node. If the other token eventually reaches
e8 (which is the case since the termination state of this workflow graph must have only one
token on e8), each termination state has a lack of synchronization.  

(4) Both OR-joins are enabled and fire simultaneously. However, this concurrent execution may
result in the same situation as in possibility (3).  

In summary, only possibility (2) results in a sound behavior. There is a (yet undefined) release
function for which our example is sound by Definition 1.

A possible release function Fexample holding for that example evaluates to enabled in a state S
for one of the both OR-joins j iff

1. there is at least one incoming edge of j which carries a token in S and
2. a. if j = O1 and none of the edges e0,e5,e6, and e8 carry a token in S

b. if j = O2 and none of all edges except e3 and e4 carry a token in S.

We compare three popular OR-join release functions in the following. For this, we assume
an OR-join j and a state S of an arbitrary workflow graph WFG for the definitions of release
functions.

S EF 1

A2

O1

O2

S1

A1
e1

e2 e3

e4

e7 e6

e0 e8e5

Figure 5. Workflow graph of the process in Figure 1 (b)
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At first, we start with a state-space based approach of Kindler [3] that essentially considers
all reachable states. As mentioned before, to consider all reachable states, we have to know the
release function of OR-joins. However, to define this release function, we have to consider all
reachable states. This is a cyclic dependency and it prevents a straight-forward formalization of
the release function. Kindler solved this problem with the fix-point theory. At this point, we accept
that Kindler has found a mathematical sound formalization. Then, the release function FKindler

evaluates to enabled iff

1. at least one incoming edge of j carries a token in S and
2. there is no token except the tokens on j itself which can travel in a reachable state of S to an

incoming edge of j that carries no token in S.

With this in mind, we see that our counter example leads to a deadlock since the token of O1

may travel to O2 if O1 fires first or vice versa (cf. possibility (1)). Therefore, the semantics of
Kindler cannot be complete.

Dumas et al. [6] follow a graph-based approach. They define their release function recursively.
It evaluates to enabled for j in S in simple terms iff j has an incoming edge which carries a token
in S and none of j’s direct predecessor nodes, e.g., p, without a token on the edge (p, j) has a (in-
direct) predecessor which is enabled. To avoid arbitrary recursion depths, each second enabledness
evaluation of an indirect predecessor node p′ of p always evaluates to not enabled. Therefore, the
release function FDumas contains an additional set V of visited nodes. FDumas(j, S, V ) evaluates
to enabled with the function call FDumas(j, S, ∅) iff

1. j /∈ V and there is an incoming edge e of j with S(e) ≥ 1 and
2. for each edge e′ = (n, j) with S(e′) = 0 exists no predecessor p of n for which

FDumas(p, S, V ∪ {j}) is enabled

Every time two OR-joins cannot be enabled until the other is not (cf. our counter example),
both are treated as enabled. Thus, they are executed non-deterministically such that O1 will be
executed before O2 or O2 will be executed before O1. That may result in a state with a lack of
synchronization (cf. possibility (3) and (4)). For this reason, FDumas is not complete.

Christiansen et al. [9] directly follow the BPMN 2.0 specification [1], i.e., they follow the
approach of Völzer [2] as it is part of the current BPMN specification. The release function FV olzer

evaluates to enabled for j in state S iff

1. there is an incoming edge e of j with S(e) ≥ 1 and
2. each other edge e′ of WFG with S(e′) ≥ 1 having a path to an incoming edge of j has also a

path to e without passing j

The argumentation of Völzer is that — in simple terms — if there is a possibility that a token
reaches an incoming edge e of j which already carries a token, then j should be fired first to avoid
a lack of synchronization. Although this argumentation is comprehensible, our sound workflow
graph in Figure 5 would lead to a deadlock since the token of O1 can travel to the tokenless
incoming edge e4 of O2 and vice versa. Therefore, both OR-joins are not enabled. Völzer himself
has already named that effect in his paper.

In summary, no considered OR-join release function is complete and therefore nobody can
execute all sound workflow graphs successfully — there is the need for a most liberal release
function.
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5 A Complete OR-Join Semantics

In the remainder of this section, we handle AND-joins as a special case of OR-joins for which
tokens always arrive at all incoming edges. This is possible in sound workflow graphs as AND-
joins cause no deadlocks. For this, we refer to all OR- and AND-joins as OR-joins.

In the former sections, we have evaluated existing release functions. Since there exists no com-
plete one, we want to derive our own approach for the first complete theory. Hence, we start at a
common property of most release functions: An OR-join j with a token on one of its incoming
edges is not enabled since it has to “wait” for a further event — in general that no more tokens can
ever arrive at an incoming edge of j. We formulate this “waiting” of an OR-join as follows:

Definition 3 (Waiting). Let WFG = (N,E) be a sound workflow graph using a release function
F , j be an OR-join, and e be not an incoming edge of j.

j waits for e in state S iff

1. j is active,
2. e carries a token, and
3. there is at least one path P from e to an incoming edge of j, such that no node touched by P

prevents the token on e from travelling via P to j (without firing j).

j waits for node n iff e is an incoming edge of n. j always waits for e iff in each state, where
j is active and e carries a token, j waits for e. j never waits for e iff in each such state j does not
wait for e.

Actually, this definition is very general: An OR-join j will not be reached by a token on an edge
e in a state S for two cases: Either (1) there is actually no path from e to an incoming edge of j or
(2) on all these paths, the token would be prevented from traveling to j. It is simple to determine
whether there is a path from e to an incoming edge of j. The interesting nodes are those which
prevent a token from travelling on a path from one edge to another edge. In the following, we
introduce the basic property of nodes always preventing the traveling of tokens. As a consequence
of this property, such nodes can only be OR-joins and they can only prevent the travel of tokens
within cyclic workflow graphs. In such graphs, there are sometimes situations in which OR-joins
seem to mutually wait for each other and therefore would cause a deadlock. With this in mind, we
subsequently define an appropriate execution order for such situations deciding which OR-joins
should wait and which OR-joins must not wait. As a result of these considerations, we derive our
approach for a complete release function which we prove to be complete in conclusion.

5.1 Basic Property

As mentioned before, we introduce the basic property of a node n always preventing the traveling
of tokens from an edge e to an incoming edge of an OR-join j. If such a node n exists on all
possible paths from e to an incoming edge of j, j does never have to wait for e. The following
lemma describes that property which holds in this respect for sound workflow graphs.

Lemma 1. Let WFG = (N,E) be a sound workflow graph, j be an active OR-join in a state S,
and e be an edge carrying a token in S.

j never waits for e
=⇒

On all paths from e to an incoming edge of j without passing j,

an OR-join always waiting for j can be activated
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Figure 6. Cases how a token can never arrive at j

Proof (Lemma 1). There are two possibilities of j never having to wait for e:

1: There is not a path from e to an incoming edge of j without passing j.X

2: There are paths from e to an incoming edge of j without passing j.
Let Pi be one of those paths Def. 3

=⇒ a token from e can never arrive at j via Pi in a reachable state
since otherwise j would wait for e⇒ the token either (1) is blocked on Pi, (2) always leaves
Pi, or (3) activates a node on Pi which always waits for j (cf. Figure 6).
Case 1: The token is blocked on Pi⇒ a deadlock must have occurred.  
Case 2: The token always leaves Pi ⇒ there is a split or an OR-split on Pi which always

decides that the token does not travel on Pi. Since splits and OR-splits decide non-
deterministically, this case is impossible.  

Case 3: The token activates a node on Pi which always waits for j. This node must be an OR-
join j2 since it must be able to wait. Since there would be a deadlock if j also waits for
j2, j never has to wait for j2. X �

In the next lemma, we show that the inversion holds too.

Lemma 2. Let WFG = (N,E) be a sound workflow graph, j be an active OR-join in a state S,
and e be an edge carrying a token in S.

On all paths from e to an incoming edge of j without passing j,

an OR-join always waiting for j can be activated
=⇒

j never waits for e
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Proof (Lemma 2). Constructive proof.

Case 1: There is no a path from e to an incoming edge of j without passing j
Def. 3
=⇒ j never

waits for e X

Case 2: There are paths from e to an incoming edge of j
without passing j (see the figure on the right of this text)
assumption
=⇒ if the token on e travelled a path Pi to j, it would

have activated an OR-join wi which would always wait for
j
deadlock-free

=⇒ j never waits for wi

jn
...

e

w1

w2

wm

=⇒ j can always be executed before wi

=⇒ j never waits for e X �

Then, the following theorem formulates our basic property:

Theorem 1. Let WFG = (N,E) be a sound workflow graph, j be an active OR-join in a state S,
and e be an edge carrying a token in S.

j never waits for e
⇐⇒

On all paths from e to an incoming edge of j without passing j,

an OR-join always waiting for j can be activated

Proof (Theorem 1). Follows directly from Lemma 1 and 2. �

5.2 Determination of an Appropriate Execution Order

In the case of acyclic sound workflow graphs, the definition of a release function is simply a result
of the previous basic property: An OR-join j only waits in state S for all those edges carrying a
token and having a path to an incoming edge of j. Otherwise, there must be a cycle.

In contrast, in the cyclic case, two OR-joins may mutually wait for each other and therefore
may cause a deadlock: A vicious circle [3]. In order to avoid these circles, the definition of a
release function has to describe in principle the appropriate execution order deciding which OR-
join in such circles has to wait and which OR-join must not wait. A concept of compiler theory
helps to find an important property in which an OR-join always waits for a token on an edge —
the post-dominance relation.

Definition 4 (Post-Dominance). Let WFG = (N,E) be a workflow graph with its end node end.
A node n post-dominates node m if every path from m to end contains n, written n pdom m.

n properly post-dominates m if n pdom m and n 6= m. n directly post-dominates m if n prop-
erly post-dominates m and any other node o that properly post-dominates m also properly post-
dominates n, i.e., the direct post-dominance relation is transitive.

A post-dominator tree of WFG is a directed graph pdom(WFG) = (N,E ′) with
E ′ = {(n,m) : n directly post-dominates m in WFG}.

Figure 7 shows the sample workflow graph (a) of Figure 5 and its post-dominator tree (b).
In sound workflow graphs, the post-dominance relation guarantees that a post-dominator j of

an active node n will be executed in each case. Hence, such a token on an incoming edge of n
travels eventually on a path to the incoming edge of the end node (and so via j) to be consumed in
the termination state. The next theorem uses this fact and describes an important property in which
an OR-join always waits for nodes which it post-dominates.
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Figure 7. The workflow graph (a) of Figure 5 and its post-dominator tree (b)

Theorem 2. Let WFG = (N,E) be a sound workflow graph, j be an active OR-join in a state S,
and n another active node in S.

j lies on all paths from n to the end node (j pdom n)

=⇒
j always waits for n

Proof (Theorem 2). Let pdom(WFG) be the post-dominator tree of WFG. It defines a partial
order caused by the post-dominance relation.

We use this order to assign numbers to each OR-join (cf. the figure on
the right of this text): Each OR-join j is given the number of OR-joins
lying on the path from j to the root node, e.g., an OR-join labelled d
has d predecessors being OR-joins in pdom(WFG). We write jd for
an OR-join j with d predecessors being OR-joins in pdom(WFG). We
can reformulate the hypothesis of this lemma as follows if jd is an active
OR-join in state S and n is another active node in S:

jd pdom n =⇒ jd always waits for n

j0

a

b

j'0 c j1

jd
...

end

This proposition will be proven by mathematical induction and by contradiction. Therefore,
we start with d = 0.

n
j0

end

Assumption: j0 does not have to wait for n in a state S
⇒ j0 can be executed independently from n in a state S1,
S →∗ S1.
Assume j0 is executed before n in S1

⇒ the end node can be activated in a subsequent state S2,
S1 →∗ S2, since there is a path from j0 to end without another
OR-join
⇒ end and n are active in S2

⇒ S2 has a lack of synchronization when the token from the outgoing edge of n eventually arrives
at the incoming edge of end.  
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jd j0

always waits for

n jd+1

state SThe induction step is based on the hypothesis
being valid for jd. So we have to show that it holds
for jd+1. The figure on the righthand side reflects
the overall situation.

Assumption: jd+1 does not have to wait for n in a state S
⇒ jd+1 can be executed independently from n in a state S1, S →∗ S1.
Assume jd+1 is executed before n in S1

⇒ jd can be activated in a following state S2, S1 →∗ S2 (since there is a path P from jd+1 to jd
without another OR-join).

jd j0

always waits for

n jd+1

state S2
Assume jd is activated in S2 and n has not fired

yet
hypothesis⇒ jd always waits for n
deadlock-free⇒ n never waits for jd
⇒ the token on the outgoing edge of n can arrive at jd+1 in a state S3, S2 →∗ S3, after n has been
fired before jd.

jd j0

always waits for

n jd+1

state S3
Assume jd+1 is again activated and it is active at

the same time as jd in S3
hypothesis⇒ jd always waits for jd+1 since jd post-
dominates jd+1
deadlock-free⇒ the same path P from jd+1 to jd can be traveled once more by the token of the outgoing
edge of jd+1 after firing jd+1

⇒ there is a state S4, S3 →∗ S4, with a lack of synchronization at an incoming edge of jd.  �

As a result, the following corollary is directly derived from the previous theorem since two
OR-joins mutually waiting for each other would cause a deadlock.

Corollary 1. Let WFG = (N,E) be a sound workflow graph, j be an active OR-join in a state
S, and n another active node in S.

n is post-dominated by j

=⇒
n never waits for j

In principle, Corollary 1 shows that in vicious circles, an OR-join does not have to wait for
its post-dominator OR-joins. For now, we assume that vicious circles have only an appropriate
execution order if one OR-join post-dominates the other. The correctness of this assumption, i.e.,
the completeness of our release function, will be proven afterwards in Theorem 3. Under these
terms, the following definition that results, in particular, from the previous corollary describes our
approach of a release function of an OR-join.

Definition 5 (Release Function). Let WFG = (N,E) be a sound workflow graph and j be an
OR-join.

The release function Fcompl evaluates to enabled for j in a state S iff

1. there is an incoming edge e of j with S(e) ≥ 1 and
2. on each path P without passing j from an active node n in S to j lies an OR-join which

post-dominates j
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As a result of our property (Theorem 1), this definition implicitly makes use of the fact that
an active OR-join j in a state S never waits for an edge e carrying a token if there is an OR-join
post-dominating j on all paths from e to that j.

Since we now have defined our approach of a release function, we can apply it to our counter
example (cf. Figure 5) of Section 4. The situation is the same: Both OR-joins O1 and O2 are active
in a reachable state S from the initial state. If we apply our semantics, OR-join O2 waits for O1 and
O1 is enabled to fire since O2 post-dominates O1. It results in the desired behavior of possibility
(2) (cf. Section 4) describing that O2 will be executed before O1 if both are active in the same state.
In this case and as mentioned before in Section 4, this execution order leads to a sound behavior.

5.3 Completeness of our Approach

Our assumption was that vicious circles only can be resolved if one of the OR-joins post-dominates
the other. If that holds, our release function would be complete. In the following theorem, it will
be proven that this assumption is correct, i.e., there is no appropriate execution order otherwise.

Theorem 3 (Completeness). Let WFG = (N,E) be a workflow graph by using an arbitrary
release function F and j1, j2 be two different active OR-joins in a state S which have at least one
path to one another.

j1 does not post-dominate j2 and j2 does not post-dominate j1

=⇒
WFG is unsound

Proof (Theorem 3). Constructive proof.
Case a: j1 always waits for j2 and j2 always waits for j1 — a deadlock.X

j1 j2

P'P

end

Case b: j1 does not wait for j2 or j2 does not wait for
j1 in state S. Without loss of generality, we assume that
j2 does not wait for j1 ⇒ j2 is executed before or at the
same time as j1. Furthermore, there is at least one path
P ′ from the incoming edge of j2 carrying a token in S to
the incoming edge of the end node without an incoming
edge of j1 (since j1 does not post-dominate j2). There is
also one path P from the incoming edge of j1 carrying a token in S to the incoming edge of the
end node where P contains P ′ as a subpath since there is a path from j1 to j2 (cf. conditions of this
Theorem 3). The figure above illustrates the situation conceptually.

Since j2 does not wait for j1 in state S as mentioned before, let j2 be executed before or at the
same time as j1 in a reachable state S1. As a consequence, in both cases, j2 is executed and its
outgoing edge carries a token in S1. A possible state S1 of an execution, which, e.g., arose from a
concurrent execution of j1 and j2, is illustrated in the figure above with grey dots.

j1 j2

P'
P

endx y

state Sc
Now, we assume a variable Sc for the cur-

rent state (initially Sc is S1) and a variable x
which initially represents the incoming or out-
going edge of j1 (depending on whether j1 was
executed before state S1 or not) and which de-
scribes the position on path P of the “token of
j1” in the current state Sc. Furthermore, there is a variable y which initially is the outgoing edge of
j2 and which represents the position on the same path P of the “token of j2” in Sc.

In Sc, there always exists two possibilities for the nodes nx and ny being currently activated by
the edges x = (n′, nx) and y = (n′′, ny):

Case 1: nx cannot be executed and ny cannot be executed since nx always waits for ny and ny

always waits for nx⇒ deadlock
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Figure 8. A workflow graph with two OR-joins mutually waiting for each other

nx ny

P

endx y

state Sc, Sn

x y

Case 2: nx can be executed or ny can be
executed in Sc (possibly at the same time) ⇒
nx or ny will be executed, tokens could be put
on that outgoing edges of nx (if nx was exe-
cuted) or ny (if ny was executed) which lie on
path P , the followed state is Sn ⇒ afterwards, let Sc be Sn and x and y those edges on P now
carrying a token, i.e., the mentioned outgoing edges of nx and ny.

Both cases show that there is either a deadlock or both tokens can exclusively travel on possibly
different edges x and y of path P . Since both tokens on x and y must eventually arrive at the same
edge of path P ′ in future (x = y), this would lead to a state with a lack of synchronization. All
cases results in an unsound behavior.X

In all cases, an execution could result in a deadlock or in a state with a lack of synchronization.
Hence, the workflow graph must be unsound!X �

In summary, our proposed release function fits in acyclic cases since active OR-joins always
have to wait for tokens on edges which have paths to them (Theorem 1). In the cyclic case, only
vicious circles prevent a simple definition of a release function as deadlocks occur (caused by mu-
tually waiting OR-joins). Such situations can only be resolved if one OR-join post-dominates the
other as mentioned in Theorem 3 — otherwise, a deadlock or a state with a lack of synchronization
is possible. In short, our approach must be complete as all cases are handled.

The following example shows a workflow graph which has a deadlock caused by two mutually
waiting OR-joins — also by using our complete release function. Figure 8 shows this workflow
graph with a vicious circle O1 → S1 → O2 → S2 → O1 and demonstrates that deadlocks actually
are not exclusive phenomenons of AND-joins: After the execution of F1, both OR-joins O1 and
O2 are activated and therefore, O1 waits for O2 and vice versa since neither O1 post-dominates O2

nor O2 post-dominates O1 and there are paths to each other. This state is a deadlock. As stated in
Theorem 3, the workflow graph is unsound. For example, if we allow one or both of the OR-joins
to be executed, the two tokens may arrive at the same incoming edge of the OR-join O3.

6 Semantics in Practice

After introducing and proving our complete release function — and therefore the most liberal
semantics of OR-joins —, we show how that semantics can be applied in practice. For this purpose,
we use the realistic sample process of Figure 2 as shown once again with labels in Figure 9.

We imagine a reachable state S in which the edges e4,e15, and e16 carry a token as illustrated
in the figure with black dots. One token (on e4) activates the OR-join OJ2, another token on e15
activates the OR-join OJ1. Existing OR-join semantics now may lead to a deadlock or to a state
with a lack of synchronization as mentioned in Section 4. Applying our semantics, however, makes
the process in each case executable in failure-free way. Therefore, at first, we determine the post-
dominator tree of our sample process (cf. Figure 10).
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Figure 9. Car service process with labels

The tree shows that OR-join OJ2 post-dominates OJ1. Therefore, on each path from the edge
e4 to an incoming edge of the OR-join OJ1, OR-join OJ2 is passed, i.e., OJ1 does not wait for the
token of the edge e4 (cf. Def. 5). As a result, OJ1 would wait for possible tokens on the edges e1,
e2, e5, e6, e8, e9, e10, e14, e16, and e18; and therefore waits in the current state S for the token of
e16. On the other hand, OJ2 waits for all edges currently carrying a token as there is no OR-join
that directly post-dominates OJ2, i.e., OJ2 would wait for possible tokens on all edges except e4,
e7, and e13. As we have proven, the process would never produce a failure situation and leads to a
sound behavior.

The explanation of the previous example shows furthermore that the set of edges ω(j) an active
OR-join j would wait for when one of those edges carries a token can be precomputed before an
execution of a process. If we assume that we use a state representation which is a subset of the set
of edges carrying a token, then the evaluation whether an active OR-join j can be executed or not
in a state S is possible in constant time at runtime (S ∩ ω(j) = ∅).

Another example is illustrated in Figure 11 which shows a structured process with two parallel
OR-split and OR-joins within a loop. We use that example to show that our OR-join semantics
also works with AND-joins since we handle them like OR-joins as mentioned at the beginning
of Section 5. For this reason, the AND-join J post-dominates both OR-joins OJ1 and OJ2, i.e.,
both do not wait for one another with regard to our release function. Therefore, the process will be
executed as intended.

7 Conclusion

In this paper, we have presented a new definition of soundness for workflow graphs with arbitrary
OR-join semantics. Based on this definition, we introduced a quality criterion — completeness
— to evaluate semantics of research, especially the semantics of Völzer [2]. Afterwards, a new
approach was determined which was proven to be complete. We have shown, that it is (to the best

S

A2

E S1

OJ2

OJ1

A7

A1

A6

F1

A4A3 OS2A5OS1

Figure 10. The post-dominator tree of the process of Figure 9
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author’s knowledge) the first, most liberal OR-join semantics which holds for all sound workflow
graphs. At the end, it could be shown that two or more OR-joins can actually cause a deadlock in
unsound workflow graphs when no correct execution order exists. Our proposed semantics helps
to detect such failure situations by static analysis.

Our next step in future work will be to develop a first approach for detecting all deadlocks
and states with lack of synchronization within processes containing OR-joins. Hence, we have to
extend previous work, e.g., Vanhatalo et al. [14], [16], Fahland et al. [17], and our previous work
for process analyses and execution [13], [18], [19], [20].
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